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Abstract A system of nonlinear differential equations is proposed to assess the effects of prevalence-
dependent disease contact rate, pathogen’s shedding rates and treatment rate on the dynamics of schisto-
somiasis in a general setting. The decomposition techniques by Vidyasagar and the theory of monotone
systems are the main ingredients to deal completely with the global asymptotic analysis of the system.
Precisely, a threshold quantity for the analysis is derived and the existence of a unique endemic equilibrium
is shown. Irrespective of the initial conditions, we prove that the solutions converge either to the disease-free
equilibrium or to the endemic equilibrium, depending on whether the derived threshold quantity is less or
greater than one. We assess the role of an integrated control strategy driven by human behavior changes
through the incorporation of prevalence-dependent increasing the prophylactic treatment and decreasing
the contact rate functions; as well as the mechanical water sanitation and the biological elimination of
snails. Because schistosomiasis is endemic, the aim is to mitigate the endemic level of the disease. In this
regard, we show both theoretically and numerically that: the reduction of contact rate through avoidance
of contaminated water; the enhancement of prophylactic treatment; the water sanitation and the removal
of snails can reduce the endemic level, and to an ideal extent, drive schistosomiasis to elimination.

Keywords Schistosomiasis ·Human behavior · Prevalence-based modeling · Integrated control ·Monotone
system · Global stability · Numerical simulation
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1 Introduction

Schistosomiasis is one of the most popular parasitic waterborne disease worldwide. It is also known as
bilharzia or bilharziosis. It is caused by blood flukes (trematode worms) of the genus Schistosoma. There are
two major forms of schistosomiasis: intestinal and urogenital caused by two main species of schistosomes out
of the five well known species (Schistosoma haematobium, Schistosoma japonicum, Schistosoma mansoni,
Schistosoma mekongi, schistosoma intercalatum). However, only three of them (Schistosoma haematobium,
Schistosoma japonicum, Schistosoma mansoni) are especially harmful to humans. In 2016, an estimate of at
least 206.4 million people were infected from which, more than 89 million were reported to have received
successful prophylactic treatment from 78 countries mostly in Sub-Saharan Africa [51,32,65].

The transmission cycle of schistosomiasis is very complex and can be simplified as follows: schistosomes,
the causal agents of the disease, lay eggs from the human body through urine (for urinary schistosomiasis) or
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feces (for intestinal schistosomiasis), which hatch in water and liberate larvae called miracidia that penetrate
freshwater snail hosts. After several weeks of growth and multiplication, cercariae emerge from the snails
and penetrate human skin during contaminative water contact (e.g. wading, swimming, washing). Cercariae
transform and subsequently migrate through the lungs to the liver where they mature into adult worms.
These adult worms move to either the veins of the abdominal cavity and lead to intestinal schistosomiasis,
or to the urinary tract and give rise to urinary schistosomiasis. Most of the eggs produced are trapped in the
tissues but a proportion escape through the bowel or urinary bladder and are release into water, and the
transmission cycle restarts [59,65,55]. This complicated transmission process and life cycle of schistosomiasis
are simplified and captured in Figures 1 and 2 below, from which the time evolution mathematical model
of the disease will be devised and insightfully investigated.

Like many other neglected tropical diseases (NTD) of poverty, the endemicity of schistosomiasis is
largely amplified by human behavior. It is primarily a behavioral disease in relation to water associated
with human practices urinating and defecating in water ponds, dams and canals [73]. Although schisto-
somiasis is prevalent and endemic in most regions in Africa, majority of people in the community at risk
have low awareness [66,65]. In communities with low to medium prevalence and good health services,
prophylactic treatment with Praziquantel may be the most cost-effective approach to control the disease.
On the other hand, in highly endemic places, the combination of prophylactic treatment, snail control mea-
sures, water sanitation and human behavioral changes might be the cost-effective control measure. Above
all, long-term sustainable measures have to be based on safe water supply, improvements in sanitation and
hygiene and mass treatment with Praziquantel [73,59,51,54]. In line with the WHO NTD Roadmap and
the WHO-AFRO 2014-2020 Regional Strategy on NTDs [67], an integrated strategy for possible mitigation
of schistosomiasis includes: preventive chemotherapy; health education; access to clean water; sanitation
improvement and environmental snail control and focal mollusciciding. More importantly, human behav-
ioral changes through health education is essential for community understanding and participation in the
proper use and continuous maintenance of sanitary and water supply facilities, as well as avoiding contacts
with contaminated water [36,64,67]. It is therefore vital to stress the need for health education to raise
community’s awareness on schistosomiasis in such regions in order to augment prevention, control and
elimination efforts. Designing of appropriate education messages targeted at raising community awareness
on schistosomiasis and driving human behavioral change are therefore required for a success of any control
program. An attempt to address these issues requires collaboration between researchers in the fields of
Medicine, Biology, Parasitology, Engineering and Applied Mathematics [64]. It is therefore clear enough
that the integrated control strategy mentioned above can only be efficient and long-lasting if the population
at risk adopt favorable behavior changes toward the disease. We do believe that mathematical models that
incorporate the previous feature are of paramount importance to provide insights into the understanding
and prevention of the schistosomiasis dynamics.

As far as Applied Mathematics is concerned, mathematical modeling had been participating in the
struggle since the seminal contribution by Barbour [6], who elaborated on Macdonald’s basic model [44]
and extended it to account for individual variations in water contact patterns. However, being ranked just
behind malaria as the second world threat [55], it is surprising that schistosomiasis has been so neglected
by Mathematicians modellers. On the other hand, the interplay between the spread of an infectious disease
and the human behaviour towards it is well-documented [45]. A large majority of such models represents
the disease transmission rates as decreasing functions of the number of awareness programs [1,9,25,38,43,
61,69], whereas the lesser part divides the susceptible individuals into two distinct classes depending on
their awareness/unawareness of the risk of infection [15,35,56,62]. All these models are subject to a number
of dynamic feedbacks and mathematical models provide an invaluable tools to study such feedbacks.
Moreover, it is worth noticeable that, there are several ways of interpreting the same influence; in the case
of disease prevalence, for example, people could respond to current, recent or historical prevalences.

Technically, there are two main modeling approaches to incorporate human behavior influences into
epidemiological modelling: belief-based and prevalence-based approaches and all the above-mentioned
models fall onto the latter approach. Because prevalence-based modeling is objective and the belief-based
is subjective, we follow the latter in order to incorporate for the first time, prevalence-dependent contact,
treatment and shedding rates in a more general schistosomiasis epidemiological model. In this work, the
prevalence-based approach accounts for:
• 1- the reduction of contacts with contaminated water;
• 2- an increase in treatment rate of humans;
• 3- the reduction of eggs sheddings (i.e the increase in sanitation).
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Even though human behavior impacts have been neglected (if not completely ignored so far) since the
works by Barbour [6] and Macdonald [44], there have been many studies published to help understanding
the transmission processes and the control measures of schistosomiasis, which cover almost all types of
modeling frameworks. One could mention few of them. Models with general incidence rate were published
in [72,26]. Some within hosts and/or multi-hosts models could be found in [52,19,41,14,16,12,74]. As far as
models of co-infection are concerned, we found only two studies [55,50]. While a couple of people devoted
their works on mathematical models with delays or with periodic environment [70,39,68,27,16,42,71,34,
13], very few researchers investigated the spatial dynamics of schistosomiasis [41,49], and optimal control
models [14,16]. Since, none of these above-mentioned existing works have taken into account the role of
human behavior on schistosomiasis, we spare the reader of their respective findings, because we want to
remain focus on that newly incorporated transmission feature of the disease.

Surprisingly, despite the call by the WHO [66] and the emphasis on the WHO NTD Roadmap and the
WHO-AFRO 2014-2020 Regional Strategy on NTD [67], that human behavior changes is the sustainable con-
trol measure to eliminate schistosomiasis, no work, to the best of our knowledge, has addressed this from
the mathematical modeling point of view, even though there is a vibrant research activity from the biological
perspective [36,73,32,51,54,64]. Note that human behavior changes are commonly incorporated implicitly
by being connected to individual’s behavior changes which are expressed in term of (1) the reduction in
human contacts and pathogens sheddings; (2) the increase of disease treatment for environmental transmit-
ted diseases, when the number of infectious individuals increases (see for example [62] and the references
therein). Therefore, as mentioned earlier, we follow this prevalence-based approach and choose the contact
rate, the shedding rates and the treatment rate functions that encompass many prevalence-dependent func-
tions in the form of a convex (or concave up) functions (in order to emphasize on the saturating behavoir of
these rates). For instance, if Ih denotes the number of infected humans, β0 the maximal contact rate between
susceptible humans and cercariae in the absence of human behavior, βM the maximal reduced effective
contact rate due to human behavior change in the presence of infectives, assuming that β0 ≥ βM, without
lost of generality, we model the contact rate βh(Ih) as follows:

βh(Ih) = β0−βMβ̃h(Ih), with β̃h(0) = 0, 0 ≤ β̃h(Ih) ≤ 1, lim
Ih→∞

β̃h(Ih) = 1, β̃h
′

(Ih) ≥ 0, β̃h
′′(Ih) < 0. (1)

The treatment and shedding rates functions will be chosen similarly and accordingly later.
The remainder of this manuscript is organized as follows. In Section 2, we formulate in a more general

manner, a model for schistosomiasis dynamics that incorporates human behavior acting specifically on
human contacts with water, human shedding rate, and disease treatment. After establishing the basic
properties, the model is further reduced thanks to Vidyasagar decomposition technique [60] in Section
3. The monotonicity [57,47,31,4] of the reduced system allows us to establish the complete asymptotic
analysis of the model, both locally and globally in Section 4. Section 5 is devoted to an integrated control
strategy investigation both theoretically and numerically by assessing: the avoidance of water contact; the
reduction of shedding; the improvement of treatment and the biological control of snails on schistosomiasis
endemicity. The paper is concluded and discussed in Section 6.

2 Model framework

Before we procced to derive the model equations, we give some main modeling assumptions.

(H1) Susceptible humans Sh become infected through effective contact βh(Ih) with the free-living cercariae C
in water. βh(Ih) depends on the number of infected humans Ih as a response to human behavior toward
disease knowledge. Actually, the past history of a disease and its current trend force people to adjust
their behavior. For instance, when people have in their mind the number of cases for the past outbreak,
or when they are informed from time to time on the current outbreak of a disease, they will tend to limit
their contacts with infected or suspected individuals. We denote by σc = σc(Sh) the consumption rate of
cercariae by susceptible human hosts.

(H2) Susceptible snails Ss become infected through effective contact with the free-living miracidia M in water.
Contrary to βh, the contact rate βs does not depend on the number of infected humans since human
behavior does not directly impact the interactions between snails and miracidia. σm = σm(Ss) denotes the
consumption rate of miracidia by susceptible snail hosts.
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!
Fig. 1 Simplified life cycle of schistosomiasis.

(H3) We assume numerous biological control measures among which, many are disease-prevalent dependent:
(i)- Treatment with Praziquantel which is modeled by a positive, increasing and saturated rate (Ih). Similar
to βh(Ih), one can conduct analogous interpretations and without lost of generality, expresses γ(Ih) in the
following form.

γ(Ih) = γ0 +γmγ̃(Ih), with γ̃(0) = 0, 0 ≤ γ̃(Ih) ≤ 1, lim
Ih→∞

γ̃(Ih) = 1, γ̃′(Ih) ≥ 0, γ̃′′(Ih) ≤ 0. (2)

(ii)- Manual or mechanical removal of snails into water at rate θ. Though the latter rate may depend on
the human behavior through the number of infected humans, we ignore it in this work for the sake of
simplicity and for mathematical tractability.
(iii)- Removal of cercariae from water (e.g. sanitizing water resource using harmless chemicals) at a
constant rate η.

(H4) In order to accentuate to role of human behavior, we denote by ah the "disease awareness rate" or "health
education uptake rate" and explicitly model the deposition rates f and g as a function of (Ih,ah) and
(Is,as), respectively. We assume that infected snails shed cercariae into water at a general rate g(Is,as),
where as can be referred to as the "indirect disease awareness rate" whose increase acts detrimentally
on the ceracariae shedding. Actually, one should look at as as a modification of (if not the same as) ah.
Similarly, infected humans deposit fresh miracidia into water at a general rate f (Ih,ah). The shedding
rates f (Ih,ah) and g(Is,as) are saturated and concave down functions of the disease prevalence Ih, they are
increasing (resp. decreasing) with respect to Ih and Is (resp. with respect to ah and as). Further properties
of these functions will be specified in the sequel (see assumption (A1) below).

(H5) We assume that susceptible snails are replenished at a constant rate bs (though, a logistic growth is more
realistic, it will not change qualitatively the model dynamics).

(H6) Since schistosomiasis is a parasitic endemic disease which mainly cause disability and rarely death, we
do not consider any death related to the infection.

In many places of the paper, where necessary, we shall simply denote f (Ih) and g(Is) instead of f (Ih,ah) and
g(Is,as). Their typical examples will be specified later in Section 5.

The population of human hosts is then divided into susceptible (Sh), infected (Ih) individuals. Similarly,
the population of snails is split into susceptible (Ss), infected (Is) individuals. M and C represent the number
of miracidia and cercariae in water, respectively. If bh,dh,dc,ds and dm denote the replenishment rate of
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humans individuals, the death rates for humans, ceracariae, snails and miracidia, respectively; then, based
on the simplified disease transmission diagram in Figure 2, we divise the following system of nonlinear
differential equations for the temporal evolution of schistosomiasis.

	
	
	 Snails	

Ss	,		Is	
Cercariae	

C	

Humans	
Sh	,		Ih	

Miracidia	
M	

Release	

Release	

Infection	 Infection	

Fig. 2 Simplified schistosomiasis transmission diagram.



dSh

dt
= bh−βh(Ih)ShC−dhSh +γ(Ih)Ih,

dIh

dt
= βh(Ih)ShC− (dh +γ(Ih))Ih,

dC
dt

= g(Is)−σcβh(Ih)ShC− (dc +η)C,

dSs

dt
= bs−βsSsM− (ds +θ)Ss,

dIs

dt
= βsSsM− (ds +θ)Is,

dM
dt

= f (Ih)−σmβsSsM−dmM.

(3)

Note that model (4) is general in the following sense:
(a)- the behavioral contact rate βh(Ih) depends monotonically on the number of infected humans Ih;
(b)- the replenishment rate of cercariae g(Is) depends monotonically on the number of infected snails Is;
(c)- the deposit rate rate f (Ih) of miracidia depends monotonically on the number of infected humans Ih.
(d)- the treatment rate γ(Ih) depends monotonically on the number of infected humans Ih.

As it is the case for most epidemic models with free-living pathogens [5,10,52,62,63], we assume that
the diminution of cercariae and miracidia in the water component do not influence the dynamics of these
pathogens. Thus, the depletion terms (−σcβh(Ih)ShC) for the cercariae and (−σmβsSsM) for miracidia have
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been removed form the corresponding equations. We shall therefore focus on the simplified model (4) below.

dSh

dt
= bh−βh(Ih)ShC−dhSh +γ(Ih)Ih,

dIh

dt
= βh(Ih)ShC− (dh +γ(Ih))Ih,

dC
dt

= g(Is)− (dc +η)C,

dSs

dt
= bs−βsSsM− (ds +θ)Ss,

dIs

dt
= βsSsM− (ds +θ)Is,

dM
dt

= f (Ih)−dmM.

(4)

To be complete, system (4) is appended by the following nonnegative initial conditions:

Sh(0) > 0, Ih(0) ≥ 0,Ss(0) > 0, IS(0) ≥ 0,M(0) ≥ 0,C(0) ≥ 0. (5)

Moreover, the following biological meaningful assumptions are either natural or direct consequences of the
hypotheses (H4), (H5) on the functions f (Ih) and g(Is), and the forms of βh(Ih) and γ(Ih) in (1) and (2).

(A1) βh(Ih) > 0,γ(Ih) > 0, f (Ih,ah) ≥ 0, g(Is,as) ≥ 0, f (0,ah) = g(0,as) = 0, f (Ih,0), g(Is,0) are linear functions of Ih
and Is, respectively. The supposition f (0,ah) = g(0,as) = 0 is a shortage in the sense that, by so doing, we
are saying that only infected humans can deposit cercariae into the water environment, which is not
always true because other mammalians (sheep, cow, etc) are potential schistosomiasis hosts, and can
therefore contribute to shed cercariae. This, together with the drawbacks mentioned in the hypotheses
(H3)-(H5) will be addressed in a different work.

(A2) β′h(Ih) ≤ 0,γ′(Ih) ≥ 0, f ′(Ih,ah) ≤ 0, g′(Is,as) ≤ 0. Except βh(Ih) which is bounded from below and convex, all
the remaining functions are bounded from above (saturated).

(A3) γ′(0) ≥ 0, f ′(0), g′(0) > 0. Moreover, f (Ih) and g(Is) are concave. This implies that f (Ih) ≤ f (0)′Ih, g(Is) ≤
g(0)′Is, so that the functions f , g cannot grow exponentially. The superscript " ’ " in (A2), (A3) denotes
the partial derivatives of f and g with respect to Ih and Is, respectively.

Specific examples of the functions βh(Ih),γ(Ih), f (Ih) and g(Is) will be provided in Section 6 for application
purposes. The reader should note that, for the assumptions on the functions βh(Ih),γ(Ih), we could give only
the conditions (A1)–(A3) which are more mathematically tractable in the sequel, but we prefer to keep also
their original forms in (1) and (2) as they permit easy construction of simple examples. Moreover, it should
be noted that ah and as are constant parameters used purely for modelling purposes and because they are
very difficult to estimate (if not completely unknown), one can vary them without considering them as
"pure" model variables.

3 Basic mathematical properties of the system

The aim of this section is threefold: (1) to prove that every Cauchy problem associated with system (4) has
a unique global (in time) solution which is nonnegative and bounded; (2) to derive a threshold quantity
that will be used later for the investigation of the long run behavior of system (4); (3) to reduce the study of
model (4) to that of a small/lower dimensional system.

3.1 Mathematical and epidemiological well-posedness

Clearly, from assumption (A2) above, the vector field defined by the right hand side of system (4) is
continuously differentiable. Thus, the classical Cauchy-Lipschitz theorem applies for the existence and
uniqueness of the (local) solution for a initial problem associated with system (4). Since we are dealing
with population sizes, it is necessary to prove that the sizes will remain nonnegative for nonnegative initial
populations.

Proposition 1 The positive coneR6
+ ofR6 is positively invariant under the flow of system (4). That is, for nonnegative

initial conditions giving in Eq. (5), the corresponding solution for system (4) is nonnegative.
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Proof : Denote Ψ (M) = βsM−ds +θ. Since bs > 0, from the fourth equation of system (4), one has

dSs

dt
> −Ψ (M)Ss.

Thus,
Ss(t) > Ss(0)e−Ψ (M)t > 0, ∀t ≥ 0. (6)

Using the positivity of Ss(t) giving by (6) in the sixth equation of model (4) and the fact that f (Ih) ≥ 0, we
prove similarly that M(t) ≥ 0, ∀t ≥ 0. This process can be performed to prove recursively that Is(t) ≥ 0 and
C(t) ≥ 0, ∀t ≥ 0. It remains to show that Sh(t) and Ih(t) are nonnegative. This is done by observing that, since
C(t),βh(Ih(t)),γ(Ih) are all nonnegative, the first two equations of system (4) define a monotone (cooperative)
dynamical system. In fact, if Y(t) = (Sh(t), Ih(t))T, then

Ẏ(t) =Φ(Y)Y(t) + B,

where,

Φ(Y) =

−βh(Ih)C−dh γ(Ih)

βh(Ih)C −dh−γ(Ih)

and B = (bh,0)T.

The conclusion follows because Φ(Y) is a Metzler matrix and B ≥ 0 [7].
Thanks to assumption A3, we set

f M = max
Ih≥0
{ f (Ih)}, gM = max

Is≥0
{g(Is)}.

After establishment of the positivity, the following result guaranties the global existence of the solutions
and of a positively invariant set (i.e, a biological feasible domain).

Proposition 2 The solutions of system (4) are bounded. Precisely, Let

Nh(t) = Sh(t) + Ih(t), Ns(t) = Ss(t) + Is(t),

denote the total number of humans and snails, respectively; gM and f M be the upper bounds of g and f , respectively.
Then the set

Ω =

{
(Sh, Ih,Ss, Is,C,M) ∈R6

+ /Nh ≤
bh

dh
, Ns ≤

bs

ds
, C ≤

gM

dc +η
, M ≤

f M

dm

}
,

is positively invariant and absorbing with respect to the flow of system (4).

Proof : This follows from the positivity of the solutions shown in Proposition 1; the fact that

dNh

dt
= bh−dhNh,

dNs

dt
= bs−dsNs,

dC
dt
≤ gM

−
(
dc +η

)
C,

dM
dt
≤ f M

−dmM;

and the application of the Gronwall Lemma.

3.2 Disease-free solution and threshold quantity

The objective of this paragraph is to derive a threshold quantity called basic reproduction number and denoted
byR0 that will be used to analyze the asymptotic behavior of system (4). There is a trivial constant solution for
system (4) for which the infected components Ih(t) = Is(t) = C(t) = M(t) = 0 called the disease-free equilibrium.
We order the component of every solution X(t) as follows: X(t) = (Sh(t),Ss(t), Ih(t), Is(t),C(t),M(t))T. Denote

X0(t) =
(
S0

h(t),S0
s (t),0,0,0,0

)T
the disease-free solution. Then

S0
h(t) =

bh

dh
, S0

s (t) =
bs

ds +θ
, ∀ t ≥ 0.

In order to compute the threshold quantity R0, we follow the next generation approach in [20,21,22].
The components of the solution corresponding to disease states are Ih(t), Is(t),C(t),M(t). Following [22], the
vector corresponding to new infections is[

βh(Ih)ShC, βsSsM, 0, 0
]T ,
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whereas the remaining transfer terms are gathered in the vector

V =
[
−
(
dh +γ(Ih)

)
Ih, − (ds +θ) Is, g(Is)−

(
dc +η

)
C, f (Ih)−dmM

]T .

Let F and V be the Jacobian matrices of F andV evaluated at X0, ρ(A) be the spectral radius of the matrix
A, then −FV−1 defines the so-called next-generation matrix [21] and the threshold R0 is the spectral radius
of −FV−1. Simple calculations give

F =


0 0 β0S0

h 0
0 0 0 βsS0

s
0 0 0 0
0 0 0 0

 and −V =


v11 0 0 0
0 v22 0 0
0 −g′(0) v33 0

− f ′(0) 0 0 v44

 ,
where, v11 = dh +γ(0),v22 = ds +θ,v33 = dc +η,v44 = dm. Note that one has

−V−1 =



1
v11

0 0 0

0
1

v22
0 0

0
g′(0)

v22v33

1
v33

0

f ′(0)
v11v44

0 0
1

v44


, −FV−1 =


0

β0S0
hg′(0)

v22v33

βh(0)S0
h

v33
0

βsS0
s f ′(0)

v11v44
0 0

βsS0
s

v44
0 0 0
0 0 0 0


.

Since R0 = ρ(−FV−1), we have

R0 = ρ




0
β0S0

hg′(0)

v22v33
βsS0

s f ′(0)
v11v44

0


,

=

√
β0S0

h f ′(0)βsS0
s g′(0)

dm(dh +γ(0))
(
dc +η

)
(ds +θ)

,

=
1

(ds +θ)

√
β0bh f ′(0)βsbsg′(0)

dmdh(dh +γ(0))
(
dc +η

) .

(7)

3.3 Equivalent and reduced system

We use the following change of variables to obtain an equivalent system to model (4). Let

Sh = Nh− Ih, Ss = Ns− Is.

Then, the model (4) is equivalent to:

dNh

dt
= bh−dhNh,

dNs

dt
= bs− (ds +θ)Ns,

dIh

dt
= βh(Ih)(Nh− Ih)C− (dh +γ(Ih))Ih,

dC
dt

= g(Is)− (dc +η)C,

dIs

dt
= βs(Ns− Is)M− (ds +θ)Is,

dM
dt

= f (Ih)−dmM.

(8)
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We reduce the stability analysis of system (8) (or equivalently of system (4)), to the study of a smaller
(in dimension) and simpler (cooperative) system. The following theorem by Vidyasagar [60] serves the
purpose and will permit us to reduce the stability analysis to that of a smaller (in dimension) system.

Theorem 1 Consider the following C1 system

dx
dt

= p(x), x ∈Rn, y ∈Rm, (n,m) ∈N2,

dy
dt

= q(x, y),

with an equilibrium point (x∗, y∗) i.e.,
p(x∗) = q(x∗, y∗) = 0.

(9)

If x∗ is globally asymptotically stable (GAS) in Rn for the subsystem
dx
dt

= p(x), and if y∗ is GAS for
dy
dt

= q(x∗, y),
then (x∗, y∗) is (locally) asymptotically stable for system (9).
Moreover, if all the trajectories of system (9) are forward bounded, then (x∗, y∗) is GAS for (9).

Denote
x = (Nh,Ns)T, y = (Ih, Is,C,M)T.

Then, it is straightforward that system (8) is in the form of system (9) because the first two equations do
not depend on y = (Ih, Is,C,M)T. Moreover, let’s define the subsystem consisted of the first two equations of
model (8) by

dx
dt

= p(x). (10)

Or equivalently 
dNh

dt
= bh−dhNh,

dNs

dt
= bs− (ds +θ)Ns.

(11)

System (10) or (11) solves explicitly as
Nh(t) =

bh

dh
+

(
Nh(0)−

bh

dh

)
e−tdh ,

Ns(t) =
bs

ds +θ
+

(
Ns(0)−

bs

ds +θ

)
e−t(ds+θ).

(12)

Denote,

N∗h = S0
h =

bh

dh
, N∗s = S0

s =
bs

ds +θ
.

Clearly, x∗ = (N∗h,N
∗
s)T is the unique equilibrium for the subsystem (10). Furthemore, from (12), one can

see that, regardless of the initial condition x(0) = (Nh(0),Ns(0))T
∈ R2

+, the corresponding solution x(t) =
(Nh(t),Ns(t))T of the system (10) converges to x∗. Therefore, x∗ is GAS in R2

+ for the system (10). Hence,
Theorem 9 applies to reduce the study of system (8) to that of the following subsystem

dy
dt

= q(x∗, y), (13)

which is explicitly given by 

dIh

dt
= βh(Ih)(N∗h− Ih)C− (dh +γ(Ih))Ih,

dIs

dt
= βs(N∗s − Is)M− (ds +θ)Is,

dC
dt

= g(Is)− (dc +η)C,

dM
dt

= f (Ih)−dmM.

(14)
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Therefore, using Theorem 1, the stability properties of system (8) on the set Ω are the same as those of the
reduced system (14), defined on

Ω1 =

{
(Ih, Is,C,M) ∈R4

+ / Ih ≤N∗h , Is ≤N∗s ,
gM

dc +η
, M ≤

f M

dm

}
.

Moreover, it is straightforward thatΩ1 is a compact, positively invariant and absorbing set for system (14).

4 Global asymptotic analysis

In this section, based on the value of R0, we study the asymptotic behavior of the solutions of (14).

4.1 R0 ≤ 1 - Convergence to the disease-free equilibrium: Lyapunov-LaSalle’s approach

The disease-free equilibrium for the reduced system (14) is E0 = (0,0,0,0). In what follows, we prove that
when R0 ≤ 1, E0 is globally asymptotically stable.

Theorem 2 If R0 ≤ 1, the disease-free equilibrium E0 is GAS in R4
+.

Proof : Since Ω1 is positively invariant and absorbing, it suffices to prove Theorem 2 in Ω1. To that
end, we use the Lyapunov-LaSalle techniques by considering the candidate Lyapunov function

L = Ih +
dm(dh +γ(0))

f ′(0)βsN∗s
Is +

βh(0)N∗h
dc +η

C +
(dh +γ(0))

f ′(0)
M.

The derivative of L along the solutions of (14) is

L̇ =
dL
dt

=
dIh

dt
+

dm(dh +γ(0))
f ′(0)βsN∗s

dIs

dt
+
βh(0)N∗h
dc +η

dC
dt

+
(dh +γ(0))

f ′(0)
dM
dt
,

= βh(Ih)(N∗h− Ih)C− (dh +γ(Ih))Ih +
dm(dh +γ(0))

f ′(0)βsN∗s

[
βs(N∗s − Is)M− (ds +θ)Is

]
+

βh(0)N∗h
dc +η

[
g(Is)− (dc +η)C

]
+

(dh +γ(0))
f ′(0)

[
f (Ih)−dmM

]
.

Using assumptions (A1)-(A3), the expansion and simplification of L̇ yield

L̇ ≤ −
[
βh(0)−βh(Ih)

]
N∗hC−

[
γ(Ih)−γ(0)

]
Ih−

dm(dh +γ(0))
f ′(0)N∗s

IsM−βh(Ih)IhC

−

[
1−

βh(0)N∗hN∗h f ′(0)βsN∗sN∗s g′(0)

dm(ds +θ)(dh +γ(0))(dc +η)

]
dm(dh +γ(0))(ds +θ)

f ′(0)βsN∗s
Is,

= −
[
βh(0)−βh(Ih)

]
N∗hC−

[
γ(Ih)−γ(0)

]
Ih−

dm(dh +γ(0))
f ′(0)N∗s

IsM−βh(Ih)IhC

−

dm(dh +γ(0))(ds +θ)
(
1−R2

0

)
f ′(0)βsN∗s

Is ≤ 0.

Since L̇ ≤ 0, it shows that L is indeed a Lyapunov function. Hence E0 is stable. To prove the global attrac-
tiveness of E0, we distinguish two cases:
Case 1: If R0 < 1, then L̇ < 0, for all (Ih, Is,C,M) , E0. Hence, L is a strict Lyapunov function, thus E0 is GAS.
Case 2: IfR0 = 1, then L̇ = 0 implies that (Ih = C = 0 and Is = 0) or (Ih = C = 0 and M = 0). Now, let K be an invari-
ant set contained in

{
(Ih, Is,C,M) ∈R4

+, L̇ = 0
}
, and let w0 = (Ih0, Is0,C0,M0) be a point in K. Then, (Ih0 = C0 = 0

and Is0 = 0) or (Ih0 = C0 = 0 and M0 = 0). Thus, by the invriance of K, the solution w(t) = (Ih(t), Is(t),C(t),M(t))
of system (14) corresponding to the initial condition w0 satifies (Ih(t) = C(t) = 0 and Is(t) = 0) or (Ih(t) = C(t) = 0
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and M(t) = 0). In either of the previous situations, replacing Ih(t) = 0 in fourth equation of (14) gives M(t)→ 0
when t→ +∞, which in turn is replaced in the second equation of (14) and lead to Is(t)→ 0 when t→ +∞.
Hence, by the positively invariance of K reduces to E0. That is, the largest invariant set contained in{
(Ih, Is,C,M) ∈R4

+, L̇ = 0
}

is the disease-free equilibrium E0. Thus, by LaSalle’s Invariance Principle [37], E0

is GAS in Ω1 whenever R0 = 1. This achieves the proof. We further illustrate Theorem 2 in Fig. 3 below.
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Fig. 3 GAS of the disease-free equilibrium E0. Blue panel: without human behavior (ah = as = 0). Black panel: with human behavior
(ah = 0.014,as = 0.033). All the parameters are as in Table 1 except that the contact rate between snails and miracidia has been reduced
to βs = 8×10−5, given R0 = 0.9261 < 1.

4.2 R0 > 1 - Convergence to the endemic equilibrium: monotone dynamical system approach

Our aim is to prove that, when R0 > 1, E0 is unstable, and there exists a unique endemic equilibrium which
is GAS for system (14) .
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Proposition 3 If R0 > 1, the disease-free equilibrium E0 is unstable.

Proof : It is a direct consequence of Theorem 2 in [22].

4.2.1 Existence and uniqueness of the endemic equilibrium

We first give some useful definitions. Let X be a non empty open set in a real Banach space V. We assume
that V has a (partial) ordering defined by a closed convex cone V+ ⊂V, we write y > x if y−x ∈V+, and y > x
if y > x, but y , x. We assume that V+ has nonempty interior. In this case, we say V is strongly ordered and
we write y� x if y−x ∈ Int(V+). In what follows, we shall take V =Rn and V+ =Rn

+ for n = 3;4.
We have shown in Proposition 3 that the disease-free equilibrium is unstable when R0 > 1. In what

follows, we prove that, system (14) has a unique endemic equilibrium whenever R0 > 1. To achieve this, we
formulate the problem of the existence as a fixed point, then afterward, use the fixed point theorem due to
Hethcote and Thieme [28] below to conclude.

Theorem 3 Let F(U) be a continuous, monotone non-decreasing, strictly sub-linear, bounded function which maps
the nonnegative orthant Rn

+ into itself. Let F(0) = 0 and suppose the Jacobian matrix JF(0) exists and is irreducible.
Then F(U) does not have a non-trivial fixed point on the boundary of Rn

+. Moreover, F(U) has a positive fixed point if
and only if ρ(JF(0)) > 1. If there is a positive fixed point, then it is unique.

Note that F′(U) in Theorem 3 denotes the Jacobian matrix JF(U) of the vector-value function F. An equilibrium
point E∗ =

(
I∗h, I
∗
s,C∗,M∗

)
for system (14) satisfies

βh(I∗h)(N∗h− I∗h)C∗− (dh +γ(I∗h))I∗h = 0,

βs(N∗s − I∗s)M∗− (ds +θ)I∗s = 0,

g(I∗s)− (dc +η)C∗ = 0,

f (I∗h)−dmM∗ = 0.

(15)

The system (15) can be easily transformed to:

I∗h =
βh(I∗h)N∗hC∗

dh +γ(I∗h) +βh(I∗h)C∗
,

I∗s =
βsN∗s f (I∗h)

dm(ds +θ) +βs f (I∗h)
,

C∗ =
g(I∗s)

(dc +η)
.

(16)

We rewrite Eq. (16) into a fix point problem of the vector function F as follows:

U∗ = F(U∗), (17)

where,

U∗ =


I∗h

I∗s

C∗

 and F(U∗) =


F1(U∗)

F2(U∗)

F3(U∗)

 =



βh(I∗h)N∗hC∗

dh +γ(I∗h) +βh(I∗h)C∗

βsN∗s f (I∗h)

dm(ds +θ) +βs f (I∗h)

g(I∗s)
(dc +η)


.

It is easy to see that F(U∗) is continuous and maps R3
+ into itself. The equilibrium points satisfy the

fix point problem U∗ = F(U∗). We use this formulation to prove existence and uniqueness of an endemic
equilibrium. Moreover, F(0) = 0 and it is straightforward that, for U∗ ∈R3

+, one has

F1(U∗) ≤N∗h, F2(U∗) ≤N∗s , F3(U∗) ≤
gM

dc +η
.
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Thus, one deduces that F(U∗) is a bounded function. More precisely, let

D =

{(
I∗h, I
∗
s,C
∗
)

: 0 ≤ I∗h ≤N∗h, 0 ≤ I∗s ≤N∗s , 0 ≤ C∗ ≤
gM

dc +η

}
,

the function F is a continuous bounded function that maps D into itself. Next, we prove that F(U∗) is
monotone non-decreasing, JF(0) is irreducible and ρ(JF(0)) > 1,whenever R0 > 1. To that end, notice that the
Jacobian matrix of F(U∗) is

JF(U∗) =

J11 0 J13
J21 0 0
0 J32 0

 ,
where,

J11 =
N∗hC∗[β′h(I∗h)(dh +γ(I∗h))−γ′(I∗h)βh(I∗h)]

[dh +γ(I∗h) + C∗βh(I∗h)]2 ≤ 0, J13 =
βh(I∗h)N∗h(dh +γ(I∗h))

[dh +γ(I∗h) + C∗βh(I∗h)]2 > 0,

J21 =
dm(ds +θ)βsN∗s f ′(I∗h)

[dm(ds +θ) +βs f (I∗h)]2 > 0, J32 =
g′(I∗s)
dc +η

> 0.

Since, from the assumptions (A1)− (A3) the entries J13, J21, and J32 are positive, the Jacobian matrix JF(U∗) is
a Metzler matrix. Thus, thanks to Theorem B4 in the Appendix B, F(U∗) is a monotone function. In addition,
it is non-decreasing because ∂Fi(U∗)/∂U∗j ≥ 0 for all i , j. Moreover, the associated directed graph of the
matrix JF(0) is a cycle. In fact, the directed graph of JF(0) is such that: edge 1 is connected to edge 3 which in
turn is connected to edge 2, which finally connects back to edge 1, giving rise to a cycle. Hence, thanks to
the graph theory, this graph is strongly connected and consequently, JF(0) is irreducible (see Theorem B1 in
the Appendix B). Furthermore,

JF(0) =


0 0

β0N∗h
dh +γ(0)

βsN∗s f ′(0)
dm(ds +θ)

0 0

0
g′(0)
dc +η

0


.

The characteristic polynomial of JF(0) is

P(x) = −x3 +
β0S0

h f ′(0)βsS0
s g′(0)

dm(dh +γ(0))
(
dc +η

)
(ds +θ)

= −x3 +R2
0,

from which one deduces easily that the spectral radius of JF(0) is (since R0 > 1),

ρ(JF(0)) = R2/3
0 > 1.

It remains to prove that F(U∗) is strictly sub-linear, i.e.

∀U∗� 0, ∀ λ ∈ (0,1), λF(U∗) < F(λU∗).

Using the fact that γ(I∗h) is increasing, some simple calculations yield

λF1(U∗)
F1(λU∗)

−1 <
λN∗hC∗

[
(dh +γ(I∗h))(βh(I∗h)−βh(λI∗h) + C∗βh(I∗h)βh(λI∗h)(λ−1)

]
F1(λU∗)

[
dh +γ(I∗h) +βh(I∗h)C∗

] [
dh +γ(λI∗h) +λβh(λI∗h)C∗

] .

Since λ ∈ (0,1), we have I∗h > λI∗h. Thus, using the assumption (A2), one has (βh(I∗h)−βh(λI∗h)) < 0. Thus,

λF1(U∗)
F1(λU∗)

−1 < 0.

One can also get easily that

λF2(U∗)
F2(λU∗)

−1 =
βsN∗s

[
dm(ds +θ)

(
λ f (I∗h)− f (λI∗h)

)
+βs f (I∗h) f (λI∗h)(λ−1)

]
F2(λU∗)

[
dm(ds +θ) +βs f (I∗h)

] [
dm(ds +θ) +βs f (λI∗h)

] .
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Since from the assumption (A3), the function f is concave down, we deduce that λ f (I∗h)− f (λI∗h) < 0 and

λF2(U∗)
F2(λU∗)

−1 < 0.

A similar proof using the concavity of g shows that

λF3(U∗)
F3(λU∗)

−1 < 0.

Hence, F(U∗) is strictly sub-linear. Applying Theorem 3, we have established the following result.

Theorem 4 R0 > 1, then system (14) has a unique endemic equilibrium in the interior of Ω1 denoted by E∗ =(
I∗h, I
∗
s,C∗,M∗

)
, such that I∗h > 0, I∗s > 0,C∗ > 0,M∗ > 0.

4.2.2 Global stability of the endemic equilibrium

Theorem 5 If R0 > 1, the endemic equilibrium E∗ of Eq. (14) is GAS in R4
+ \ {E0}.

The proof of Theorem 5 hinges on the monotonicity property of model (14) and on the result below whose
proof can be found in [75,76]:

Theorem 6 Let h :Rn
+→R

n, n ∈N\ {0} be a continuously differentiable map. Assume that
(1) h is cooperative on Rn

+ and the Jacobian matrix (∂hi/∂y j)1≤i, j≤n is irreducible for every y ∈Rn
+;

(2) h(0) = 0 and hi(y) ≥ 0 for all y ∈Rn
+ with yi = 0, i = 1,2, ...,n;

(3) h is strictly sub-linear on Rn
+. Then

(a) if the stability modulus s(Jh(0)) of Jh(0) is nonnegative, then y = 0 is GAS in Rn
+;

(b) if s(Jh(0)) > 0 and ϕ(t, y0) is the solution for ẏ = h(y) initiate at y0, then either
(i) for any y ∈R4

+ \ {E0}, limt→∞ || ϕ(t, y) ||= +∞, or alternatively,
(ii) system ẏ = h(y) admits a unique positive steady state y∗� 0 which is GAS in R4

+ \ {E0}.

Proof of Theorem 5: We write model (14) in the form

ẏ = h(y),

where,

y =


Ih
Is
C
M

 , h(y) =


βh(Ih)(N∗h− Ih)C− (dh +γ(Ih))Ih

βs(N∗s − Is)M− (ds +θ)Is

g(Is)− (dc +η)C
f (Ih)−dmM.

 .
Clearly h is continuously differentiable from R4

+ to R4. The Jacobian matrix of h at y ∈R4
+ is

Jh(y) =


−h11 0 h13 0

0 −h22 0 h24
0 g′(Is) −h33 0

f ′(Ih) 0 0 −dm

 , (18)

with,
h11 = [−β′h(Ih)(N∗h− Ih) +βh(Ih)]C + (dh +γ(Ih)) +γ′(Ih)Ih,

h13 = βh(Ih)(N∗h− Ih),

h22 = βsM + ds +θ,

h24 = βs(N∗s − Is),

h33 = dc +η.

Jh(y) is a Metzler matrix, h is cooperative [57]. Moreover, using the graph theory [28], one can easily see
that Jh(y) is irreducible since h13,h24, f ′(Ih), g′(Is) are positive. Thus, condition (1) in Theorem 6 is fulfilled
for n = 4. Condition (2) of Theorem 6 is straightforward for n = 4.
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To show that h is strictly sub-linear, observe that for every y� 0 and α ∈ (0,1), if h1(y) = βh(Ih)(N∗h− Ih)C−
(dh +γ(Ih))Ih, then, since βh(αIh) > βh(Ih), N∗h−αIh >N∗h− Ih and γ(αIh) < γ(Ih), we have

h1(αy) = αβh(αIh)(N∗h−αIh)C−α(dh +γ(αIh))Ih

> α
[
βh(Ih)(N∗h− Ih)C− (dh +γ(Ih))Ih

]
= αh1(y).

On the other hand, since g(Is) is concave with g(0) = 0, we have

g(αIs) = g(αIs + (1−α)0) > αg(Is) + (1−α)g(0) = αg(Is).

Thus,
h3(αy) = g(αIs)− (dc +η)αC

> α
[
g(Is)− (dc +η)C

]
= αh3(y).

Similarly, since f (Ih) is concave and f (0) = 0, one has

f (αIh) = f (αIh + (1−α)0) > α f (Ih) + (1−α) f (0) = α f (Ih),

and therefore,
h4(αy) = f (αIh)−dmαM

> α
[

f (Ih)−dmM
]

= αh4(y).

Finally, since N∗s −αIs >N∗s − Is, it is obvious that

h2(αy) = βs(N∗s −αIs)αM− (ds +θ)αIs
> α

[
βs(N∗s − Is)M− (ds +θ)Is

]
= αh2(y).

Hence, h is strictly sub-linear and condition (3) of Theorem 6 is satisfied for n = 4. It remains to verify that
s (Jh(0))> 1. This is straightforward because Jh(0) = F+V = F− (−V) is a regular decomposition/splitting, and
according to ([7], page 138), one has

s (Jh(0)) > 1⇐⇒R0 > 1.

Since the conditions for Theorem 6 are fulfilled for n = 4, its application proves that E∗ is GAS in R4
+ \ {E0}.

Theorem 5 is further illustrated by Fig. 4 below.

Remark 1 It is worth noticeable that, thanks to Theorem 1, the GAS of the unique endemic equilibrium of the
reduced system (14) established in Theorem 5 translates back to the GAS of the unique endemic equilibrium
of system (8), which in turn translates back to the GAS of the unique endemic equilibrium of system (4),
since the latter system is equivalent to the former one. This, together with the GAS of the disease-free
equilibrium established in Theorem 2, completely solves the asymptotic behavior of our original model (4)
which, despite its general form, exhibits the classical threshold dynamics similar to most epidemic models.

5 Application: control measures and sensitivity analysis

Since the most important feature of our model is the incorporation of human behavior through the use
of the disease prevalence dependent contact rate βh(Ih), the human shedding rate function f (Ih), g(Is) and
the treatment rate function γ(Ih), without loss of generality, we reformulate these functions to allow an
easy-to-do assessment of their impacts on the disease dynamics.

We study model (14) by choosing simple "human behavior" functions βh(Ih), γ(Ih), f (Ih), g(Is) which satisfy
the assumptions (A1)− (A3) as follows:

βh(Ih) = β0−βM
Ih

1 + Ih
, γ(Ih) = γ0 +γm Ih

1 + Ih
, f (Ih) = δh

Ih

1 + ahIh
, g(Is) = ξs

Is

1 + asIs
, (19)

where β0, βM, γ0, γm, ah, as, δh, ξs are defined in Table 1. Precisely, δh (resp. ξs) is the maximal shedding rate of
infected humans (resp. snails). The parameter ah (resp. as) models the positive effect of human behavior and
represents the "shrinking" rate for the deposition of miracidia (resp. cercariae) by infected humans (resp. by
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Fig. 4 GAS of the disease-persistent equilibrium E∗. All the parameters are as in Table 1 except that the contact rate between snails and
miracidia has been increased to βs = 3.5×10−4, leading to R0 = 1.937 > 1.

snails) due to human behavior. Clearly, in the absence of human behavior (i.e ah = 0), the cercariae are shed
linearly, and ah can be thought of as awareness rate of the disease by humans. Similar remarks apply for the
role of as on the shedding of cercariae, where as could be thought of as indirect awareness rate of the disease.

With the "toy functions" given in Eq. (19), we shall revisit, the corresponding expression of the basic
reproduction number, the theorem on the existence and uniqueness of the corresponding endemic equilib-
rium E∗ and further provide insights into the role of human behavior on the endemicity level of the disease.
Note that with the choice of the functions above in (19), the basic reproduction number reads

R0 =
1

(ds +θ)

√
β0bhδhβsbsξs

dmdh(dh +γ0)
(
dc +η

) .
Moreover, it is easy to show that the I∗h-component of the endemic equilibrium E∗ of Eq. (14) satisfies the
quadratic equation:

P(I∗h) = A2I∗h
2 + A1I∗h + A0 = 0, (20)

where,

A2 = ξsδhβsN∗s(β0−βM) + (dc +η)(dh +γ0 +γm)
[
δhβs + ahdm(ds +θ) + asδhβsN∗s

]
,

A1 = dm(ds +θ)(dc +η)(dh +γ0)
(
1−R2

0

)
+γmdm(ds +θ)(dc +η) +ξsδhβsN∗s(β0 +βMN∗h)

+(ds +θ)(dc +η)(dh +γ0)
[
δhβs + ahdm(ds +θ) + asδhβsN∗s

]
,

A0 = dm(ds +θ)(dc +η)(dh +γ0)
(
1−R2

0

)
.

If R0 ≤ 1, then A2,A1,A0 > 0, such that Eq. (20) do not have any positive root. Hence, there no endemic
equilibrium in this case.
If R0 > 1, then A0 < 0, P(0) = A0 < 0. Since A2 > 0, we have P(+∞) = +∞, so that, applying the intermediate
value theorem, there exists a positive root for Eq. (20). Furthermore, by Descartes’s rule of signs, the positive
root is unique. Therefore, the discriminant ∆ = A2

1−4A0A2 is positive. Thus, the unique positive solution of
Eq. (20) is given by

I∗h =
−A1 +

√
A2

1−4A0A2

2A2
. (21)
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From Eq. (21) and using the explicit expressions for βh(Ih),γ(Ih), f (Ih) in Eq. (19), we recover the remaining
positive components of E∗ as follows:

I∗s =
βsN∗s f (I∗h)

dm(ds +θ) +βs f (I∗h)
,

C∗ =

(
dh +γ(I∗h)

)
I∗h

(N∗h− I∗h)βh(I∗h)
=

g(I∗s)
dc +η

,

M∗ =
f (I∗h)

dm
.

(22)

Table 1 Parameters description of model (4).

Transmission param. Description Values Ranges Sources

bh Human replenishment rate 8000 [6000, 10000] [12]
bs Snail replenishment rate 200 [150, 3000] [12]
βh(Ih) Behavioral contact rate for humans
βs Contact rate for snail 9.1×10−5 [0.00006, 0.0009] [46]
dh Human natural death rate 0.014 [0, 0.5] [23]
dc Cercaria natural death rate 1 [1, 5] [46,53]
ds Snail natural death rate 0.004 [0.001, 0.04] [46]
dm Miracidium natural death rate 2.52 [2, 10] [46]
γ(Ih) Behavioral treatment rate
θ Snail removal rate 0.1 [0.01, 0.5] Variable
η Cercaria removal rate 0.05 [0.01, 0.5] Variable
f (Ih) Behavioral human shedding rate
g(Is) Behavioral snail shedding rate

Behavior param. Description Values Ranges Sources

β0 Behavioral contact rate for humans 0.059 [0.05, 0.1] [46]
βM Maximal reduced contact rate 0.032 [0.01, 0.04] [46]
γ0 Constant treatment rate 0.03 [0.01, 0.05] [23]
γm Maximum increase treatment rate 0.002 [0.001, 0.02] Variable
δh Maximum deposit rate of miracidia 500 [300, 800] [46]
ξs Maximum deposit rate of cercariae 0.08 [0.03, 0.1] [46]
ah Direct effect of human behavior [0, 0.05] [0,∞] Variable
as Indirect effect of human behavior [0, 0.033] [0,∞] Variable

5.1 Impact of human behavior: reduction of contacts with contaminated water by cercariae

To assess the positive impact of reducing the contact between cercariae and susceptible humans due to
behavior changes, we recall that βh(Ih) is reformulated in Eq. (19) to satisfy Eq. (1) such that β0 = βh(0)>βM > 0,
β0 is the usual contact rate in the absence of human behavior and βM is the maximal reduced contact rate
due to positive behavior change.

Analytically, the positive impact of minimizing βh(Ih) is acknowledged by decreasing the disease endemic
level and is summarized in the following theorem.

Theorem 7 If R0 > 1, the disease-component I∗h of the unique endemic equilibrium E∗ of system (14) is strictly
decreasing in the maximal reduced contact rate βM.

Proof : It suffices to show that
∂I∗h
∂βM

≤ 0. To that end, we stress that the direct differentiation of the

explicit expression of I∗h in Eq. (21) with respect to βM leads to mathematical difficulties hard to overcome.
Alternatively, we shall differentiate Eq. (20). Since A0 in Eq. (20) does not depend on βM, we have:

2A2I∗h
∂I∗h
∂βM

+ I∗h
2 ∂A2

∂βM
+ A1

∂I∗h
∂βM

+ I∗h
∂A1

∂βM
=
∂I∗h
∂βM

(
2A2I∗h + A1

)
+ I∗h

(
∂A1

∂βM
+ I∗h

∂A2

∂βM

)
= 0.
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From the latter relation, using Eq. (22), we obtain

∂I∗h
∂βM

= −

I∗h

(
∂A1

∂βM
+ I∗h

∂A2

∂βM

)
2A2I∗h + A1

= −
I∗hξsδhβhN∗s

(
N∗h− I∗h

)
2A2I∗h + A1

. (23)

Clearly, the numerator of Eq. (23) is positive. Since A1 can be negative or positive, it remains to prove the
positivity of its denominator. This is done by observing that, thanks to Eq. (21), the quantity 2A2I∗h + A1 =
√
∆ > 0. This achieved the proof.

Corollary 1 The result in Theorem 7 holds in the generic setting where the functions βh,γ, f , g are not explicitly
specified but satisfy the assumptions (A1)-(A3).

The proof of this corollary is provided in the Appendix A.

Remark 2 The following observations are in order:
(1)- The favorable impact of reducing/avoiding contacts with cercariae can not act on the reduction of R0
through minimization of βM. This is because human behavior change only starts when the disease outbreak
has established itself and R0 is calculated at the disease-free equilibrium when no behavioral change has
already been triggered by the disease burden.
(2)- The decrease in I∗h with respect to the increase in βM also leads to the decrease in I∗s,C∗ and M∗ (this can
be seen analytically on Eq. (22), since the functions f ,γ, g are increasing), so that a significant reduction of
βM can mitigate the disease. This is further illustrated in Figs. 5 and 10.

5.2 Impact of human behavior: case management/prophylactic treatment

As expected, the positive impact of treating infected humans is first acknowledged right at the beginning
of disease through the reduction of the threshold quantity R0, because R0 given in Eq. (7) a decreasing
function of γ0. Unfortunately, the human behavior change through the increase of the treatment rate do
not occur at the onset of the disease; it happens rather later. Hence, to assess the impact of increasing the
treatment rate on the disease dynamics due to human behavior change, we recall the form of γ(Ih) in (2):
γ(Ih) = γ0 +γmγ̃(Ih). Let’s recall that γ0 is the constant treatment rate in the absence of human behavior, while
γm is the maximum increase treatment rate due to behavior change. The desirable impact of decreasing the
endemic level of the disease by increasing human propensity to undergo treatment is theoretically assessed
in the following result.

Theorem 8 If R0 > 1, the disease-component I∗h of the unique endemic equilibrium E∗ of (14) is strictly decreasing in
the maximum increase treatment rate γm due to human behavior change.

The proof of Theorem 8 is similar to that of Theorem 7 and is skipped. Moreover, the following remark is
an analog of Remark 2, item (2).

Remark 3 The decrease in I∗h with respect to the increase in γm also leads to the decrease in I∗s,C∗ and M∗,
so that by reducing significantly γm, the disease can be eradicated or sufficiently mitigated. This is further
illustrated in Fig. 11.

5.3 Impact of human behavior: water sanitation enhancement

In order to capture the influence of positive human behavior change on schistosomiasis evolution via the
shedding of miracidia into water, we model in the next section the shedding function f (Ih,ah) such that
in addition to satisfy the conditions (H4), (A2) and (A3), it vanishes when the disease awareness/health
education uptake rate ah goes to infinity. A typical example for f (Ih,ah) is proposed in Eq. (19). Since f (Ih,ah)
is a decreasing function of ah, we intend to show that the endemic level of the disease decreases with the
increase of ah (awareness/health education uptake rate) and eventually approaches zero when ah becomes
large enough. Precisely, the following result is established.

Theorem 9 If R0 > 1, the disease-component I∗h of the unique endemic equilibrium E∗ of Eq. (14) decreases with the
awareness rate ah. Moreover, limah→∞ I∗h(ah) = 0.
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Proof : The first statement is readily shown as in Theorem 7. As for the second statement, it follows by
taking the limit of the explicit expression of I∗h as ah→∞ , or alternatively in the generic case, one notices
that as ah tends to infinity, the shedding function f (Ih,ah) goes to zero. Thus, system (14) transforms to
the system (i.e when f (Ih) = 0) in which the miracidia population M(t) decreases exponentially to zero.
Consequently, either component Is(t),C(t) and Ih(t) decreases exponentially to zero as well. That is the
disease-free equilibrium is the unique GAS equilibrium of model (14). This proves the theorem. To prove
numerically Theorem 9 and emphasize the importance of human behavior on the reduction of the endemic
level, we first plot I∗h versus the maximal reduced contact rate βM and secondly plot I∗h versus the disease
awareness rate ah in Fig. 5, as well as the contour plot of I∗h in the plane (ah,βM) in Fig. 6. On the other hand,
the effects of human behavior on the reduction of time series solutions are displayed in Figs. 10, 11 and 12.
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Fig. 5 Effects of sole human behavior change on the endemic level of the disease.

5.4 Biological control: removal of snails and/or cercariae

The positive impact of providing safe and clean water is first seen right at the beginning of disease through
the reduction of R0, which, according to Eq. (7), is readily a decreasing function of θ and η.

Theorem 10 If R0 > 1, the disease-component I∗h of the unique endemic equilibrium E∗ for model (14) is strictly
decreasing with respect to either, the removal rate of snails θ, or of cercariae η.

Proof : This proof is similar to Theorem 7. It suffices to differentiate Eq. (28) with respect to θ for the first
case and to η for the second case. We skip the proof and illustrate it numerically in Fig. 13.

The impacts of biological control strategies on schistosomiasis may also be addressed by assessing
the effects of the corresponding control on the basic reproduction number R0. Simultaneous influences of
model parameters on R0 can provide insights into the most effective factors in mitigating R0. Some of these
investigations are shown in Fig. 7, from which the sensitivity analysis via the computation of Partial Rank
Correlation Coefficients (PRRCs) of R0 with respect to involved parameters shows the positive effect of
increasing θ on the huge reduction ofR0. Moreover, in Fig. 8, one could realize that, when the contact rate in
the absence of human behavior very large, say for instance β0 = 0.1, the removal of snails must be increased
to at least θ = 0.025 in order to bring R0 below one. Similarly, when the treatment rate in the absence of
human behavior very small, say for instance γ0 = 0.02, the removal of snails must be increased to at least
θ = 0.028 in order to bring R0 below one.
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Fig. 6 Effects of combined human behavior changes on the endemic level of the disease.

5.5 Biological control: blocking cercariae shedding by snails

One possible way to mitigate schistosomiasis is by controlling the transmission of parasite larvae from
the snails that carry them. Snail inhibition is a biological process by which the snails are prevented from
shedding cercariae [2,33]. We model this by a shedding g(Is,ah) such that apart from satisfying the conditions
(H4), (A2) and (A3), it increases with the maximum shedding rate ξs. A typical and simple example for
g(Is,ah) is given Eq. (19). We intend to show that the endemic level of the disease decreases with the decrease
in the maximum shedding rate ξs of infected snails and eventually approaches zero as ξs reaches its minimal
value 0. Precisely, the following result is established.

Theorem 11 If R0 > 1, the disease-component I∗h of the unique endemic equilibrium E∗ of system (14) decreases with
the maximum shedding rate ξs. Moreover, limξs→0 I∗h(ξs) = 0.

Proof : While the proof of the first statement is similar to that of Theorem 7, that of the second statement
follows from Theorem 9.

5.6 Global sensitivity analysis

Traditionally, in mathematical epidemiology, sensitivity analysis tells us how important each parameter is
to the disease transmission process. It is commonly used to determine the robustness of model predictions to
parameter values. Such information can first be drawn from the analysis of the basic reproduction number
R0, in order to evaluate the strength of involved parameters in triggering or mitigating the disease outbreak.
Its ultimate aim being to discover parameters with high influence on R0, and on which intervention/control
strategies should be targeted. To achieve that, the sets of input parameter values sampled using the Latin
Hypercube Sampling (LHS) method is used to run 1000 simulations. We compute the Partial Rank Correla-
tion Coefficients between R0 and each parameter and display the results in Fig. 7. Because the parameters
of interest to us are those related to human behavior (which unfortunately do not appear in R0) and those
related to biological control, from Fig. 7, one can notice that R0 is highly sensitive to θ and less sensitive to
η. Since θ accounts for the reduction of snails, whereas η deals with the removal of cercariae, we conclude
that an increase in θwill be the best biological control measure to implement in order to significantly reduce
R0 and consequently minimizes the disease outbreak risk.



Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment 21

On the other hand, the global sensitivity analysis of model variables in Fig. 9 shows that the human
and snail infected classes are highly influenced by the increase in the maximum reduced human contact
βM and disease awareness parameters ah and as, respectively. Thus, highlighting the role of positive human
behavior changes in reducing the severity of schistosomiasis and/or in controlling the disease. Furthermore,
infected snails and miracidia are more sensitive the removal rate θ than infected humans and cercariae do.
More importantly, Fig. 9 further illustrates the robustness of Theorems 7-11 with respect to the changes
on model’s parameters, by showing that the latter results remain valid when all the parameters vary
simultaneously. Thus, an integrated control strategy will always be beneficial to the reduction of the severity
of schistosomiasis.
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Fig. 7 Partial Rank Correlation Coefficients (PRCCs) for the global sensitivity analysis of R0 with respect to each model parameter.

Fig. 8 Effects of the combination of the constant transmission rates and one biological control on R0. Left panel: constant treatment
rate (γ0) and removal rate of infected snails (θ). Right panel: constant contact rate (β0) and removal rate of infected snails (θ).
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Fig. 9 Partial Rank Correlation Coefficients (PRCCs) for the global sensitivity analysis of I∗h, I∗s , C∗, M∗ with respect to each model
parameter. Or equivalently, it gives the global influence of model’s parameters on the solution (Ih(t), Is(t),C(t),M(t)) of model (14) for
large enough values of the time t and is consistent with the results for local sensitivity analyses in Theorems 7-11 in the sense that
control measures have positive impacts by decreasing the number of infected humans Ih(t).

5.7 Numerical study

Finally, to verify our theoretical findings, we simulate model (8) using the simple "human behavior" functions
βh(Ih), γ(Ih), f (Ih), g(Is) formulated in Eq. (19) above. The transmission related parameters are mostly taken
from [23,46,53], while, due to the lack of data about human behavior towards schistosomiasis, corresponding
parameters values mimic those in [46] as shown in Table 1. In fact, in [46], parameters for schistosomiasis
are given for different temperature values. One could observe that, the higher the temperature, the higher
the tendency of people to have contacts with water to cool themselves. Therefore, since for most tropical
regions, the average temperature is 25oC and the highest is 30oC, we use the parameters values for these
two temperatures to estimate the maximum increase in contact (βM) with cercariae into water .

The theoretical results are illustrated numerically in the pictures of Fig. 3 for the GAS of the disease-
free equilibrium, regardless of the values of ah and as. The GAS of the endemic equilibrium is shown in
Fig. 4 for R0 > 1 and small value of ah whereas, when ah is sufficiently high, Fig. 12 highlights the fact the
endemic equilibrium becomes sufficiently small (approaches zero) even though R0 (which is independent
of ah) is still greater than one. The latter observation suggests that human behavior only can reduce the
endemic level of the disease and can possibly drives it to extinction. The same conclusion is drawn, when
in Fig. 10 and Fig. 11, one observes that, reducing the maximum contact rate βM of human with cercariae, or
increasing the likelihood/propensity γm of people to seek for treatment during disease outbreak decreases
the endemic level of the disease and possibly help to mitigate/eradicate it. Similarly, Fig. 13 depicts the
fact that a biological control consisting of the increase in the removal rate of snails θ (for example, through
fish predation) is another efficient strategy to mitigate the infection. Of course, the same result holds if the
removal ralte of cercariae η (for instance, through the use of safe chemicals) is implemented instead.

6 Conclusion and discussions

6.1 Conclusion

A nonlinear system of ordinary differential equations has been constructed to describe the dynamics of
schistosomiasis. The novelty from the modeling perspective lies in the incorporation of human behavior
through the use of a general prevalence-dependent contact rate βh(Ih), as well as the treatment rate γ(Ih)
and the shedding rates of miracidia f (Ih) and cercariae g(Is). The contact rate βh(Ih) is assumed to be a
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Fig. 10 Illustration of Theorem 7 and Remark 2: Positive effect of the maximum reduced contact rate βM in reducing the epi-
demic/endemic level of the disease. All parameters are as in Table 1. R0 = 1.7933 > 1. Red curve: βM = 0.00120 Blue curve: βM = 0.0022.
Black curve: βM = 0.0032).
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Fig. 11 Illustration of Theorem 8 and Remark 3: Positive effect of the minimum reduced contact rate γm in reducing the epi-
demic/endemic level of the disease. All parameters are as in Table 1. R0 = 1.7933 > 1. Red curve: γm = 0.002. Blue curve: γm = 0.006.
Black curve: γm = 0.01).

decreasing but with nonzero minimum function of the number of infected human individuals Ih. Its role is
to reduce the contact between human beings and cercariae. The shedding rates f (Ih) and g(Is) are increasing,
but saturating functions of the number of infected human beings and snails, respectively. Their respective
relevance lies in the fact that, we have assumed that the more infected humans are recorded, the more the
infected snails and the more the shedding of cercariae and miracidia by humans and snails. As a response
to the increase of infected humans (and of course the increase in the shedding of infectives agents: cercariae
and miracidia), a control measure is launched by assuming an increasing, but saturated treatment rate
function γ(Ih). Note that the consideration of βh(Ih), γ(Ih), f (Ih) and g(Is) represents four different human
behavior-driven control strategies in this work.

The global asymptotic stability analysis of the resulted model has been completely carried out, with the
model exhibiting a threshold dynamics: we have shown that the disease dies out when the basic reproduction
number R0 (i.e the threshold parameter) is less than or equal to one, and persists globally whenever R0
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Fig. 12 Positive impact of human behavior in reducing the shedding rate of cercariae and miracidia. One could see that even though
the parameters from Table 1 are such that R0 = 1.7933 > 1, by increasing ah while as = 0, it is possible to bring the disease to extinction
(top 2 panels). This progression to the elimination is much more faster than do the increasing of as while ah = 0 (bottom 2 panels).

is greater than one. This threshold dynamics was translated back to the orignial model via the facilitation
of two main ingredients: (1) the decomposition technique by Vidyasagar [60] which helped to reduce the
dimension of the original model and obtain an asymptotically equivalent and more mathematically tractable
reduced model. (2) the fact the reduced model was a monotone (cooperative) system with a nice property
of being strictly sub-linear [57,75,76].

Because human behavior change in our modeling framework had no influence the dynamics in the
absence of disease, and since the basic reproduction number R0 is estimated at the disease-free population,
human behavior did not alter the value of R0 [43,45,56,62]. Therefore, favorable human behavior changes
will not help to bring back larger value of R0 under unity. Nonetheless, intensifying favorable human
behavior changes greatly helped to reduce the number infected humans at the endemic level (i.e. if R0 > 1).
This was illustrated in Figs. 10-12. Moreover, if by other (biological) control means such as: removal of
snails and cercariae, treatment of infected humans; the basic reproduction number R0 can be brought to
a value less than 1 (see Fig. 8), then positive human behavior change can help to accelerate the extension
of the epidemic. (see Fig. 3 where, the use of ah > 0 halves the elimination time, precisely from 200 days
to 100 days. Hence, our theoretical and numerical analyses were centered on the implementation of an
integrated control strategy, with the main focus on the impacts of human behavior on schistosomiasis
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Fig. 13 Illustration of Theorem 10: Positive impact of biological control in removing (predation for instance) of infected snails. Red
curve: θ = 0.06 Bue curve: θ = 0.08 Back curve: θ = 0.1).

dynamics and the quantification of the expectation of positive human behavior changes in mitigating the
epidemic and endemic levels of the disease. Complementary to the theoretical analysis above, the global
sensitivity analysis (see Fig. 7) of the basic reproduction number has been performed and has shown that it
is highly sensitive the biological control parameter θ accounting for the removal the snails from the water.
The assessment of the effects of model’s parameters on the solutions (see Figs. 10-13) further highlighted
the fact that infected humans and snails are highly sensitive to human behavior parameter βM and disease
awareness parameter ah, respectively. In addition to the latter, Fig. 9 showed that the combination of all
the control strategies will always be beneficial to the reduction of the severity of the endemic level of
schistosomiasis.

Specifically, in order to deepen the assessment of the impacts of human behavior and biological control
on the transmission dynamics of schistosomiasis, many control strategies have been investigated both
theoretically and numerically, including a biological control in removing the snails and cercariae in water.
Our main results with respect to the implementation of this integrated control measure showed that:

(i) - minimizing the human contact rate with cercariae, by increasing the maximum reduced contact rate
βM due to human behavior, reduces the endemic level of the disease (see Theorem 7, Fig. 9 and Figs. 10).

(ii) - increasing the treatment rate of humans by increasing the maximum reduced treatment rate γm due
human behavior is beneficial (see Theorem 8, Fig. 9 and Fig. 11).

(iii) - minimizing the shedding rate of cercariae, by increasing the awareness of disease rates ah and/or as is
favorable in mitigating the disease (see Theorem 9, Fig. 9 and Fig. 12).

(iv) - implementing biological control, by increasing the removal rate of snails θ or of cercariae η; each may
help to reduce the infection risk, mitigate the disease burden, minimize the epidemic/endemic level and
eventually drives it to the lowest endemic level (see Theorem 10, Fig. 9 and Fig. 13).

All these investigations have demonstrated the importance of human behavior and biological control in
reducing and/or controlling the schistosomiasis transmission risk and its epidemic/endemic level.

6.2 Discussion

Having realized that amongst all the biological control strategies, the one that mostly minimizes R0 in a
robust sense is the removal/elimination rate θ of snails, we believe and suggest that the reduction of infected
snails could be the cost-effective biological control measure for the mitigation of schistosomiasis. This can
be simply implementated by introducing in into water ponds, the predator fishes (pawns, crayfishes, etc.)
that prey on snails [8]. This latter control strategy was implemented recently in Senegal and have given
promising outcomes [58]. It is worth noticeable that the removal rate of cercariae η has a mild effect on R0
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(very small PRCC coefficient) compared to θ. Moreover, knowing that the removal of cercariae can only
be efficiently performed by the utilization of chemicals, which in fact is not recommended due to water
pollution threat, one can conclude that the best biological measure to lower the basic reproduction number
R0 is the implementation of snails elimination by introducing the snail’s predator fishes.

The assessment of the impacts of model’s parameters on the solution (Ih(t), Is(t),C(t),M(t)) done through
Figs. 10-12 showed that, in addition to depict the fact these variables decrease when the favorable human
behavior increases, they highlight the fact that the human infected population always decreases, while the
snails, the cercaria and miracidia populations decrease in the beginning of the disease and later increase
to reach an equilibrium state in approximately one year (400 days). This suggests that, human behavior
(through the parameters ah,γ

m,βM) first acts directly and detrimentally on the populations of snails, cercariae,
miracidia, and do not affect the infected human population (since it is increasing) at the onset of the disease.
The same feature cannot be observed in Fig. 13 because the basic reproduction number R0 do depend on
the parameter θ. One should acknowledge, on the one hand that it is very difficult (if not impossible)
to practically quantify human behavior parameters (ah,γ

m,βM,as) [24] in order to test our results in this
work against the reality at hand, and on the other hand that, the striguing question is more about what
type of behaviour change is possible, how to measure it, and how to implement in a model? Futhermore,
other human behavior modelling approaches might lead to different conclusions, and it is very difficult to
say which approach is more relevant or which conclusion is more suitable. Therefore, to dodge the latter
difficulty, one should alternatively focus on biological control measures that can be easily implemented. In
this regard, among many possibilities, the following extensions of our model are possible alternatives:

(1) - Diverting the cercariae to nonsensitive snails (in order to minimize the population of cercaria producing
snails) by the incorporation in our model of a competitor nonsensitive snail population [19].

(2) - The introduction the population of predator fishes that prey on sensitive snails [58].

In a more complicated setting, the consideration of:

(a) The inclusion of other and more elaborated behavioral contact and/or shedding rates functions instead
of simple prevalence-dependent functions.

(b) The spatial dynamics (reaction-convection-diffusion model) of snails and/or cercariae will be worth
investigating.

Besides the above mentioned possible extensions which will involve additional variables, one should
actually note that, in the current work, the dependence of g on ah indirectly describes the influence of
the number of infected human individuals Ih on the shedding of miracidia. In fact, as Ih increases, human
hosts get informed/educated, then revised their shedding habit of miracidia, which leads to less infection
of snails and latter to less shedding of cercariae by snail hosts. However, if contrary to hypothesis (H4),
human behavior change is broadened to educate people to not urinate or defecate in water ponds, it is more
reasonable to assume that g depends directly on Ih and that f (Ih,ah) and g(Ih,ah) are respectively replaced
by f1(Ih,ah)Ih and g1(Ih,ah)Is, where f1 and g1 are decreasing convex functions of Ih with nonzero lower
bounds. The latter features can be understood by noticing that, the greater the infected humans, the lesser
the cercariae are shed (human behavior change), the lesser the snails are infected and the lesser the miracidia
are generated. The current assumptions on f , g have been adopted in this work for simplicity, as well as for
mathematical technicalities and for the monotonicity property of the reduced system.

Lastly, we draw the attention of the reader that, in this work we have assumed that human behavior
changes is always beneficial in curtailing the spread of disease. However, it is possible that human behavior
becomes counterproductive (e.g. the wrong quarantine practices ; the release of messages inciting fears
over vaccine safety, as it was the case in during West Africa Ebola outbreak, etc.). Thus, more elaborated
forms of human behavior contact, treatment function rates (not necessary monotone) should be considered.
A more realistic model, accounting for the drawbacks mentioned in (H3)-(H5) is been taking care of in a
different study, in which, unfortunately the nice mathematical properties we have here will be lost, unless
one further assumes that the derivative of ( f1(Ih,ah)Ih) is positive, in order to recover the monotonicity of the
corresponding reduced model. If the latter assumption is relaxed, a different analytical approach should be
adopted to deal with the asymptotic dynamics of the model. Nonetheless, philosophically, we believe that
the conclusions will be similar as far as the influence of human behavior on the disease control is concerned.
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Appendixes

Appendix A: Proof of Corollary 1

Proof : We are going to prove that
∂I∗h
∂βM

≤ 0. Recall the equilibrium equations



βh(I∗h)(N∗h− I∗h)C∗− (dh +γ(I∗h))I∗h = 0,

βs(N∗s − I∗s)M∗− (ds +θ)I∗s = 0,

g(I∗s)− (dc +η)C∗ = 0,

f (I∗h)−dmM∗ = 0.

(24)

In system (24), the fourth equation gives M∗ =
f (I∗h)

dm
, from which the first and second equations, yield

C∗ = v(I∗h) =
(dh +γ(I∗h))I∗h
βh(I∗h)(N∗h− I∗h)

, (25)

and

I∗s = u(I∗h) =
βsN∗s f (I∗h)

βs f (I∗h) + dm(ds +θ)
. (26)

Putting the two expressions above into the third equation of (24), yields another expression of v(I∗h) in the
form one has

v(I∗h) =
dc +η

g(u(I∗h))
. (27)

Recalling from (1) that βh(I∗h) = β0−βMβ̃h(I∗h), v(I∗h) in (25) becomes

v(I∗h) =
(dh +γ(I∗h))I∗h

(N∗h− I∗h)
[
β0−βMβ̃h(I∗h)

] .
Thus the I∗h-component of the endemic equilibrium E∗ is the solution of

(dh +γ(I∗h))I∗h
(N∗h− I∗h)

[
β0−βMβ̃h(I∗h)

] =
dc +η

g(u(I∗h))
. (28)

After differentiating both sides of (28) with respect to βM using the chain rule, follow by some rearrange-
ments, one has

∂I∗h
∂βM

 W(I∗h)[
β0−βMβ̃h(I∗h)

]2
(N∗h− I∗h)2

+
(dc +η)g′(u(I∗h))u′(I∗h)

g2(u(I∗h))


= −

I∗h
[
dh +γ(I∗h)

]
β̃h(I∗h)[

β0−βMβ̃h(I∗h)
]2

(N∗h− I∗h)
,

(29)



30 M. A. Aziz-Alaoui et al.

where,

W(I∗h) =
[
dh +γ(I∗h)

] [
(N∗h− I∗h)βh(I∗h) + I∗hβh(I∗h) +βMI∗h(N∗h− I∗h)β̃h

′

(Ih)
]
+ I∗h(N∗h− I∗h)βh(I∗h)γ′(I∗h).

Have in mind that, from (26), one has

u′(I∗h) =
du(I∗h)

dI∗h
=
βsN∗sdm f ′(I∗h)(ds +θ)[
βs f (I∗h) + dm(ds +θ)

]2 .

Since f , g and β̃h(I∗h) are increasing, we have u′(I∗h),W(I∗h) ≥ 0 so that the right hand side of (29) is negative
and the expression into the big brackets on the left hand side of (29) is positive. Hence the proof is achieved.

Appendix B: A primer on graph theory and monotone dynamical systems

A primer on graph theory

Definition B1: (Berman and Plemons [7], page 29). For a n×n matrix A =
(
ai j

)
1≤i, j≤n

, the directed graph

G(A) consists of P1,P2, ...,Pn vertices where an edge leads from Pi, to P j if and only if ai j , 0.
Definition B2: (Berman and Plemons [7], page 30). A directed graph G(A) is strongly connected if for any
ordered pair (Pi,P j), i , j of vertices of G(A), there exists a sequence of edges (a path) which leads from Pi to
P j.
Theorem B1: (Berman and Plemons [7], Theorem (2.7), page 31). A matrix A is irreducible if and only if
G(A) is strongly connected.

A primer on monotone dynamical systems

Consider an ODE
dx
dt

= f (x), (30)

defined on a positively invariant set U. We denote by Φt(x) the flow f of this ODE, or in other words the
trajectory at time t starting from x. We assume, to avoid complications, that this is defined for any t ≥ 0
(this will be the case our system). We consider the standard partial order on Rn and recall the following
corresponding notations:

x ≤ y⇐⇒ for all i xi ≤ yi;

x < y if x ≤ y and x , y;

x� y⇐⇒ for all i xi ≤ yi.

Definition B3: (Hirsch [29]). System (1) is called monotone if x ≤ y implies Φt(x) ≤Φt(y).
Definition B4: (Hirsch [29]). System (2) is called strongly monotone if x < y implies Φt(x)�Φt(y) for any
t > 0.
Theorem B4: (H. Smith [57], Lemma 2.1). If f is C1 then System (1) is monotone if and only if the Jacobian
of f is a Metzler matrix.

Note that a Metzler matrix is a matrix whose off-diagonal terms are nonnegative.
Theorem B5: (Hirsch [29]). System (2) is strongly monotone if its Jacobian matrix is irreducible.
Definition B5: (Berman and Plemons [7], page 138). A matrix A has a regular splitting/decomposition if A
has a representation A = M−N, where M−1

≥ 0, N ≥ 0.
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