1,188 research outputs found

    Sparsity in Variational Autoencoders

    Full text link
    Working in high-dimensional latent spaces, the internal encoding of data in Variational Autoencoders becomes naturally sparse. We discuss this known but controversial phenomenon sometimes refereed to as overpruning, to emphasize the under-use of the model capacity. In fact, it is an important form of self-regularization, with all the typical benefits associated with sparsity: it forces the model to focus on the really important features, highly reducing the risk of overfitting. Especially, it is a major methodological guide for the correct tuning of the model capacity, progressively augmenting it to attain sparsity, or conversely reducing the dimension of the network removing links to zeroed out neurons. The degree of sparsity crucially depends on the network architecture: for instance, convolutional networks typically show less sparsity, likely due to the tighter relation of features to different spatial regions of the input.Comment: An Extended Abstract of this survey will be presented at the 1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019), 20-22 March 2019, Barcelona, Spai

    BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling

    Full text link
    With the introduction of the variational autoencoder (VAE), probabilistic latent variable models have received renewed attention as powerful generative models. However, their performance in terms of test likelihood and quality of generated samples has been surpassed by autoregressive models without stochastic units. Furthermore, flow-based models have recently been shown to be an attractive alternative that scales well to high-dimensional data. In this paper we close the performance gap by constructing VAE models that can effectively utilize a deep hierarchy of stochastic variables and model complex covariance structures. We introduce the Bidirectional-Inference Variational Autoencoder (BIVA), characterized by a skip-connected generative model and an inference network formed by a bidirectional stochastic inference path. We show that BIVA reaches state-of-the-art test likelihoods, generates sharp and coherent natural images, and uses the hierarchy of latent variables to capture different aspects of the data distribution. We observe that BIVA, in contrast to recent results, can be used for anomaly detection. We attribute this to the hierarchy of latent variables which is able to extract high-level semantic features. Finally, we extend BIVA to semi-supervised classification tasks and show that it performs comparably to state-of-the-art results by generative adversarial networks

    A stable variational autoencoder for text modelling

    Get PDF
    Variational Autoencoder (VAE) is a powerful method for learning representations of high-dimensional data. However, VAEs can suffer from an issue known as latent variable collapse (or KL term vanishing), where the posterior collapses to the prior and the model will ignore the latent codes in generative tasks. Such an issue is particularly prevalent when employing VAE-RNN architectures for text modelling (Bowman et al., 2016; Yang et al., 2017). In this paper, we present a new architecture called Full-Sampling-VAE-RNN, which can effectively avoid latent variable collapse. Compared to the general VAE-RNN architectures, we show that our model can achieve much more stable training process and can generate text with significantly better quality
    corecore