1,036 research outputs found

    Pseudorehearsal in actor-critic agents with neural network function approximation

    Full text link
    Catastrophic forgetting has a significant negative impact in reinforcement learning. The purpose of this study is to investigate how pseudorehearsal can change performance of an actor-critic agent with neural-network function approximation. We tested agent in a pole balancing task and compared different pseudorehearsal approaches. We have found that pseudorehearsal can assist learning and decrease forgetting

    Pseudorehearsal in actor-critic agents with neural network function approximation

    Get PDF
    Catastrophic forgetting has a significant negative impact in reinforcement learning. The purpose of this study is to investigate how pseudorehearsal can change performance of an actor-critic agent with neural-network function approximation. We tested agent in a pole balancing task and compared different pseudorehearsal approaches. We have found that pseudorehearsal can assist learning and decrease forgetting

    Continual Lifelong Learning with Neural Networks: A Review

    Full text link
    Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration

    Pseudorehearsal in actor-critic agents with neural network function approximation

    Get PDF
    Catastrophic forgetting has a significant negative impact in reinforcement learning. The purpose of this study is to investigate how pseudorehearsal can change performance of an actor-critic agent with neural-network function approximation. We tested agent in a pole balancing task and compared different pseudorehearsal approaches. We have found that pseudorehearsal can assist learning and decrease forgetting

    Continual Learning with Adaptive Weights (CLAW)

    Get PDF
    Approaches to continual learning aim to successfully learn a set of related tasks that arrive in an online manner. Recently, several frameworks have been developed which enable deep learning to be deployed in this learning scenario. A key modelling decision is to what extent the architecture should be shared across tasks. On the one hand, separately modelling each task avoids catastrophic forgetting but it does not support transfer learning and leads to large models. On the other hand, rigidly specifying a shared component and a task-specific part enables task transfer and limits the model size, but it is vulnerable to catastrophic forgetting and restricts the form of task-transfer that can occur. Ideally, the network should adaptively identify which parts of the network to share in a data driven way. Here we introduce such an approach called Continual Learning with Adaptive Weights (CLAW), which is based on probabilistic modelling and variational inference. Experiments show that CLAW achieves state-of-the-art performance on six benchmarks in terms of overall continual learning performance, as measured by classification accuracy, and in terms of addressing catastrophic forgetting
    • …
    corecore