629 research outputs found

    Average-case analysis for the MAX-2SAT problem

    Get PDF
    AbstractWe propose a simple probability model for MAX-2SAT instances for discussing the average-case complexity of the MAX-2SAT problem. Our model is a “planted solution model”, where each instance is generated randomly from a target solution. We show that for a large range of parameters, the planted solution (more precisely, one of the planted solution pairs) is the optimal solution for the generated instance with high probability. We then give a simple linear-time algorithm based on a message passing method, and we prove that it solves the MAX-2SAT problem with high probability for random MAX-2SAT instances under this planted solution model for probability parameters within a certain range

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    Renyi entropies as a measure of the complexity of counting problems

    Full text link
    Counting problems such as determining how many bit strings satisfy a given Boolean logic formula are notoriously hard. In many cases, even getting an approximate count is difficult. Here we propose that entanglement, a common concept in quantum information theory, may serve as a telltale of the difficulty of counting exactly or approximately. We quantify entanglement by using Renyi entropies S(q), which we define by bipartitioning the logic variables of a generic satisfiability problem. We conjecture that S(q\rightarrow 0) provides information about the difficulty of counting solutions exactly, while S(q>0) indicates the possibility of doing an efficient approximate counting. We test this conjecture by employing a matrix computing scheme to numerically solve #2SAT problems for a large number of uniformly distributed instances. We find that all Renyi entropies scale linearly with the number of variables in the case of the #2SAT problem; this is consistent with the fact that neither exact nor approximate efficient algorithms are known for this problem. However, for the negated (disjunctive) form of the problem, S(q\rightarrow 0) scales linearly while S(q>0) tends to zero when the number of variables is large. These results are consistent with the existence of fully polynomial-time randomized approximate algorithms for counting solutions of disjunctive normal forms and suggests that efficient algorithms for the conjunctive normal form may not exist.Comment: 13 pages, 4 figure

    Inferring AS Relationships: Dead End or Lively Beginning?

    Full text link
    Recent techniques for inferring business relationships between ASs have yielded maps that have extremely few invalid BGP paths in the terminology of Gao. However, some relationships inferred by these newer algorithms are incorrect, leading to the deduction of unrealistic AS hierarchies. We investigate this problem and discover what causes it. Having obtained such insight, we generalize the problem of AS relationship inference as a multiobjective optimization problem with node-degree-based corrections to the original objective function of minimizing the number of invalid paths. We solve the generalized version of the problem using the semidefinite programming relaxation of the MAX2SAT problem. Keeping the number of invalid paths small, we obtain a more veracious solution than that yielded by recent heuristics

    Bounded Depth Circuits with Weighted Symmetric Gates: Satisfiability, Lower Bounds and Compression

    Get PDF
    A Boolean function f:{0,1}^n -> {0,1} is weighted symmetric if there exist a function g: Z -> {0,1} and integers w_0, w_1, ..., w_n such that f(x_1, ...,x_n) = g(w_0+sum_{i=1}^n w_i x_i) holds. In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits with AND, OR, NOT gates and a limited number of weighted symmetric gates. Our algorithms run in time super-polynomially faster than 2^n even when the number of gates is super-polynomial and the maximum weight of symmetric gates is nearly exponential. With an additional trick, we give an algorithm for the maximum satisfiability problem that runs in time poly(n^t)*2^{n-n^{1/O(t)}} for instances with n variables, O(n^t) clauses and arbitrary weights. To the best of our knowledge, this is the first moderately exponential time algorithm even for Max 2SAT instances with arbitrary weights. Through the analysis of our algorithms, we obtain average-case lower bounds and compression algorithms for such circuits and worst-case lower bounds for majority votes of such circuits, where all the lower bounds are against the generalized Andreev function. Our average-case lower bounds might be of independent interest in the sense that previous ones for similar circuits with arbitrary symmetric gates rely on communication complexity lower bounds while ours are based on the restriction method

    Long-range frustration in T=0 first-step replica-symmetry-broken solutions of finite-connectivity spin glasses

    Full text link
    In a finite-connectivity spin-glass at the zero-temperature limit, long-range correlations exist among the unfrozen vertices (whose spin values being non-fixed). Such long-range frustrations are partially removed through the first-step replica-symmetry-broken (1RSB) cavity theory, but residual long-range frustrations may still persist in this mean-field solution. By way of population dynamics, here we perform a perturbation-percolation analysis to calculate the magnitude of long-range frustrations in the 1RSB solution of a given spin-glass system. We study two well-studied model systems, the minimal vertex-cover problem and the maximal 2-satisfiability problem. This work points to a possible way of improving the zero-temperature 1RSB mean-field theory of spin-glasses.Comment: 5 pages, two figures. To be published in JSTA
    • …
    corecore