101,487 research outputs found

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Average case complexity of linear multivariate problems

    Get PDF
    We study the average case complexity of a linear multivariate problem (\lmp) defined on functions of dd variables. We consider two classes of information. The first \lstd consists of function values and the second \lall of all continuous linear functionals. Tractability of \lmp means that the average case complexity is O((1/\e)^p) with pp independent of dd. We prove that tractability of an \lmp in \lstd is equivalent to tractability in \lall, although the proof is {\it not} constructive. We provide a simple condition to check tractability in \lall. We also address the optimal design problem for an \lmp by using a relation to the worst case setting. We find the order of the average case complexity and optimal sample points for multivariate function approximation. The theoretical results are illustrated for the folded Wiener sheet measure.Comment: 7 page

    Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

    Full text link
    In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares (S-NNLS) problem. We introduce a family of probability densities referred to as the Rectified Gaussian Scale Mixture (R- GSM) to model the sparsity enforcing prior distribution for the solution. The R-GSM prior encompasses a variety of heavy-tailed densities such as the rectified Laplacian and rectified Student- t distributions with a proper choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM prior and develop an evidence maximization framework based on the Expectation-Maximization (EM) algorithm. Using the EM based method, we estimate the hyper-parameters and obtain a point estimate for the solution. We refer to the proposed method as rectified sparse Bayesian learning (R-SBL). We provide four R- SBL variants that offer a range of options for computational complexity and the quality of the E-step computation. These methods include the Markov chain Monte Carlo EM, linear minimum mean-square-error estimation, approximate message passing and a diagonal approximation. Using numerical experiments, we show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both signal and support recovery performance, and is also very robust against the structure of the design matrix.Comment: Under Review by IEEE Transactions on Signal Processin

    Average Case Tractability of Non-homogeneous Tensor Product Problems

    Get PDF
    We study d-variate approximation problems in the average case setting with respect to a zero-mean Gaussian measure. Our interest is focused on measures having a structure of non-homogeneous linear tensor product, where covariance kernel is a product of univariate kernels. We consider the normalized average error of algorithms that use finitely many evaluations of arbitrary linear functionals. The information complexity is defined as the minimal number n(h,d) of such evaluations for error in the d-variate case to be at most h. The growth of n(h,d) as a function of h^{-1} and d depends on the eigenvalues of the covariance operator and determines whether a problem is tractable or not. Four types of tractability are studied and for each of them we find the necessary and sufficient conditions in terms of the eigenvalues of univariate kernels. We illustrate our results by considering approximation problems related to the product of Korobov kernels characterized by a weights g_k and smoothnesses r_k. We assume that weights are non-increasing and smoothness parameters are non-decreasing. Furthermore they may be related, for instance g_k=g(r_k) for some non-increasing function g. In particular, we show that approximation problem is strongly polynomially tractable, i.e., n(h,d)\le C h^{-p} for all d and 0<h<1, where C and p are independent of h and d, iff liminf |ln g_k|/ln k >1. For other types of tractability we also show necessary and sufficient conditions in terms of the sequences g_k and r_k
    corecore