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We study the average case complexity of linear multivariate problems, that is, 
the approximation of continuous linear operators on functions of d variables. The 
function spaces are equipped with Gaussian measures. We consider two classes of 
information. The first class AsLd consists of function values, and the second class 
Aaii consists of all continuous linear functionals. Tractability of a linear multivari- 
ate problem means that the average case complexity of computing an E-approxi- 
mation is O((l/~)p) with p independent of d. The smallest such p is called the 
exponent of the problem. Under mild assumptions, we prove that tractability in 
A”’ is equivalent to tractability in Artd, and that the difference of the exponents is 
at most 2. The proof of this result is not constructive. We provide a simple 
condition to check tractability in A al’. We also address the issue of how to con- 
struct optimal (or nearly optimal) sample points for linear multivariate problems. 
We use relations between average case and worst case settings. These relations 
reduce the study of the average case to the worst case for a different class of 
functions. In this way we show how optimal sample points from the worst case 
setting can be used in the average case. In Part II we shall apply the theoretical 
results to obtain optimal or almost optimal sample points, optimal algorithms, and 
average case complexity functions for linear multivariate problems equipped with 
the folded Wiener sheet measure. Of particular interest will be the multivariate 
function approximation problem. 8 1992 Academic PRSS. LIE.  

1. INTRODUCTION 

We study linear multivariate problems which are defined as approxi- 
mating continuous linear operators on functions of d variables. We are 
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particularly interested in the case of large d. Part I deals with the theory of 
linear multivariate problems. Part II will deal with applications of the 
theoretical results to concrete linear multivariate problems. Two impor- 
tant examples of such problems are multivariate integration and multiva- 
riate function approximation in which we wish to integrate or recover a 
function which depends on d variables. 

Many linear multivariate problems are intractable in the worst case 
setting. That is, the worst case complexity of computing an .z-approxima- 
tion is infinite or grows exponentially’ with d; see e.g., TWW (1988).2 For 
example, for multivariate integration and function approximation of r 
times continuously differentiable functions of d variables, the worst case 
complexity is of order (l/~)~“, assuming that an s-approximation is com- 
puted using function values. Thus, if only continuity of the functions is 
assumed, i.e., r = 0, then the worst case complexity is infinite. For posi- 
tive r, if d is large relative to r, then the worst case complexity is huge 
even for modest E. In either case, the problem cannot be solved in the 
worst case setting. 

To break intractability of the worst case setting, we must switch to a 
different setting with a weaker guarantee of computing an .z-approxima- 
tion. In this paper we choose to switch to an average case setting and we 
study liner multivariate problems on the average with respect to a Gaus- 
sian measure. The average case complexity is defined as the minimal 
average cost of computing an approximation with average error at most E. 

The average case complexity depends, in particular, on the class A of 
information operations. We consider two classes. The first class A = Astd 
consists of function values, the second class A = Aa” consists of all con- 
tinuous linear functionals. We are particularly interested in how the aver- 
age case complexity depends on E, d, and A. 

We say that a linear multivariate problem is tractable in the average 
case setting iff there exists a nonnegative number p such that, for all d, its 
average case complexity is O((l/&)p). The smallest such p is called the 
exponent of that linear multivariate problem. That is, tractability means 
that, no matter how large d, we can compute an average &-approximation 
with an average cost which is a polynomial in l/e of fixed degree p. 
Obviously, we wish to have p as small as possible, and the smallest p is 
the exponent of the linear multivariate problem. 

We stress that the concept of tractability ignores multiplicative factors 
which may, in particular, depend on d. In fact, most estimates presented 
in this paper are module a multiplicative factor which may depend on d. 

’ In this paper we will not distinguish between infinite complexity and complexity which 
grows exponentially with d. Both will be called intractable. Sometimes a distinction is made, 
see e.g., Traub and Woiniakowski (1991). 

* By TWW (1988) we mean Traub, Wasilkowski, and Woiniakowski (1988). 



LINEAR MULTIVARIATE PROBLEMS, I 339 

Obviously, this dependence on d is very important in practical computa- 
tions. Ideally, we would like to bound the average case complexity by 
ac(l/e)q for all d and E, for some fixed (and hopefully small) nonnegative 
(Y and 4 which are independent of d. Here, c is the cost of computing a 
functional from A and may depend on d; this is the only dependence on d. 
We call this property strong tractability. We shall report on strong tracta- 
bility in a future paper. 

The first major subject of this paper is to study which linear multivariate 
problems are tractable in the average case setting. Under mild assump- 
tions, we show that tractability in A std is equivalent to tractability in Aa”. 
The difference between their exponents is at most 2, and this is sharp. We 
provide a simple condition for checking tractability in Aa”. We also show 
that tractability of multivariate function approximation for a particular 
measure implies tractability of all linear multivariate problems for that 
measure. 

In this way we may check tractability of a particular linear multivariate 
problem in A”“, or equivalently in Astd. Clearly, all linear multivariate 
problems specified by a linear functional are tractable in Astd since they 
can be computed exactly with one information evaluation from A”” and 
thus are trivial in that class. Therefore, their average case complexity in 
Astd is at most of order (l/~)~. 

In particular, this means that in the average case setting, multivariate 
integration is tractable in Astd and its exponent is at most 2. This is in a 
sharp contrast with the worst case setting where, even for d = 1, the 
worst case complexity in Astd can be infinite or an arbitrary increasing 
function of l/c; see Werschulz (1985). Of course, intractability of multiva- 
riate integration in the worst case setting can be also broken by switching 
to the randomized setting and using the classical Monte Carlo algorithm. 

In Aa” it,is known which information operations are optimal; see TWW 
(1988, p. 234). This fact is used in the proof of the theorem on tractability 
in Astd to conclude the existence of good sample points at which the 
function should be evaluated. Unfortunately, the proof is not construc- 
tive. Thus, although the theorem states that the average case complexity 
in Astd is bounded by a polynomial in l/c of fixed degree, its proof does not 
provide a constructive way to achieve this bound. 

The optimal design problem of constructing sample points which 
achieve (or nearly achieve) the average case complexity in Astd is the 
second major subject of the paper. This problem has been long open, even 
for multivariate integration and function approximation. We address the 
construction of optimal (or nearly optimal) sample points for linear multi- 
variate problems by utilizing relations between average case and worst 
case settings. 

We first discuss the approximation of a continuous linear functional 
which corresponds to a multivariate weighted integration. In this case, the 
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relation between average case and worst case settings is well known and 
used in many papers; see e.g., Kimeldorfand Wahba (1970a, b), Micchelli 
and Wahba (1981), Paskov (1991), Sacks and Ylvisaker (1966, 1968, 
1970a, b), TWW (1988, Section 2.2 of Chap. 7), Wahba (1971), and Ylvisa- 
ker (1975). A thorough overview may be found in Wahba (1990). This 
relation states that the average error of a linear algorithm that uses n 
function values at nonadaptive sample points is equal to the worst error of 
the same algorithm over the unit ball of a reproducing kernel Hilbert 
space. The kernel of this Hilbert space is given by the covariance kernel 
of the measure defining the average case setting. 

We compare the average case complexity to the worst case complexity 
of the corresponding problem defined on the reproducing kernel Hilbert 
space. We show that the average case complexity is bounded by the worst 
case complexity of the corresponding problem and they can differ only if 
adaption helps on the average. Using general results of Wasilkowski 
(1986), we show how to bound the average case complexity from below by 
the worst case complexity. Often the bounds differ only by a multiplica- 
tive factor. In this way, we reduce optimal design in the average case 
setting to optimal design of the corresponding problem in the worst case 
setting. 

We note that the worst error of multivariate weighted integration is 
bounded by the worst error multivariatefunction approximation. Thus, it 
is enough to use optimal sample points of multivariate function approxi- 
mation in the worst case setting to get good, and sometimes optimal, 
sample points for multivariate weighted integration in the average case 
setting. 

For general multivariate problems, in which we approximate continu- 
ous linear operators, we may choose either of two approaches. The first 
one is to express a linear multivariate problem as a number of multivariate 
weighted integrals and apply the analysis performed for multivariate 
weighted integration. Hence, good sample points for multivariate 
weighted integration in the average case setting can be used for general 
multivariate problems in the average case setting. 

The second approach is to notice that an arbitrary linear multivariate 
problem can be solved by solving the multivariate function approximation 
problem. Hence, it is enough to study the latter. Multivariate function 
approximation in the average case setting is related to a multivariate 
function approximation problem in the worst case setting for the repro- 
ducing kernel Hilbert space. The worst case problem assumes that the 
error is defined in the L, norm. The worst error serves as an upper bound 
on the average error. In this way, good sample points for multivariate 
function approximation in the worst case setting can be used for general 
multivariate problems in the average case setting. 
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2. LINEARMULTIVARIATE PROBLEMS 

In this section we define a linear multivariate problem LMP as a se- 
quence of linear multivariate problems indexed by d, LMP = {LMPd}. 
Here, d represents the number of variables of the functions we are dealing 
with. 

The linear multivariate problem LMPd is specified by several parame- 
ters (F, p, G, S, A) which may also depend on d. We now define them in 
turn. 

Let D be a Lebesgue measurable subset of Rd. By h(D) we denote the 
volume of D. We assume that h(D) is positive and finite. Let F be a 
separable Banach space of functions f: D + R. We assume that F is a 
subset of the space Lz(D) of square integrable functions and that linear 
functionals L(f) = f(x) for any x E D are continuous with respect to the 
norm of F. 

The space F is equipped with a Gaussian measure p with mean zero and 
covariance operator C, ; for basic properties of Gaussian measures, see, 
e.g., Kuo (1975) and Vakhania (1981). Let 

(2.1) 

be the covariance kernel of the measure p. It is well defined sincef(t) and 
f(x) are continuous linear functionals. 

Consider a continuous linear operator S, 

S: F- G, 

where G is a separable Hilbert space over the real field. Our aim is to 
approximate elements S(f) for f E F. 

The last parameter of LMPd is the class A which consists of certain 
continuous linear functionals L: F + R. We assume that A is either hstd or 
Aa”. Here, 

AStd = {L: there exists x E D such that L(f) = f(x), Vf E F}, 

which means that only function values are considered, and 

which means that all continuous linear functionals are considered. 
This completes the definition of all parameters of the linear multivariate 

problem LMPd. It is called linear to stress that we are approximating a 
linear operator S. As already mentioned, by a linear multivariate problem 
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LMP we mean a sequence {LMPd} with varying d. We are particularly 
interested in the case when d is large. 

We now explain how we compute an approximation U(f) to the ele- 
ment S(f). Assume that information about the functionf, f E F, is gath- 
ered by computing a number of continuous linear functionals L(f), where 
L E A. Hence, if A = Rstd then we assume that only function values can 
be computed, and if A = Aa” then we assume that arbitrary continuous 
linear functionals can be computed. 

Let 

wf) = [Jxf), L2cfL . . * 3 -L(fN, ‘?fEF, 

denote the computed information aboutf. The choice of L;, Li E A, may 
depend adaptively on the already computed information, 

Li = Lf’; Yl9 . * . 3 Yi-I) with yi = L;(f). 

The number n = n(f) is called the cardinality of the information atf, and, 
in general, depends on the computed y;, see TWW (1988, Chap. 3). 

Knowing y = N(f), the approximation U is computed as V(f) = 
4(y), where 4, 4: N(F) + G, is an arbitrary mapping. Some restriction 
on the choice of 4 are imposed by defining the cost of U and seeking U 
which computes an e-approximation with minimal cost. In this way, 6, 
with a high cost of computing 4(y) will be automatically eliminated. 

We define error and cost of the approximation U. Since we deal with 
the average case setting, error and cost are both defined on the average. 
The average error of U is defined as 

ea”g( u) = (l, 11 s(f) - U(f )l/‘p(df )) “2. 

The average cost of U is defined as follows. Assume that each evaluation 
of L(f), L E A andf E F, cost c = c(d), where c > 0. Assume that we 
can perform arithmetic operations and comparisons on real numbers as 
well as the basic operations in the space G with cost taken as unity. By the 
basic operations we mean adding two elements g + h, and multiplying by 
a scalar czg for g, h E G and (Y E R. Usually the cost of computing L(f) is 
much larger than unity, c + 1. 

Let cost(N, f) denote the information cost of computing y = N(f). 
Clearly, we have cost(N, f) L en(f). Let n,(f) denote the number of 
operations needed to compute 4(y) given y = N(f). (It may happen that 
n,(f) = +a.) The average cost of U is then given as 

costy U) = = i, ( costfN, f) + ndf)Mdf). 
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We are ready to define the average case complexity of LMPd as the 
minimal cost of computing .9approximations, 

compavg(&) = inf{costavg( 17): U such that ea”g( U) I E}. 

We stress that the average case complexity compavg(e) depends on all 
parameters of LMPd, 

compavg(&) = compavg(E; LMPJ = cornpaY&; d, F, k. G, S, A). 

To stress the dependence on certain parameters, we will sometimes list 
only just those. Hence, if we write 

compavg(&; d) or compavg(&; d, A), 

then the role of d, or d and A is stressed. As mentioned before, the 
dependence on d is also present in some other parameters. For example, 
the measure p and the operator S both depend on d. Sometimes we write 
p = Id and s = &!?d to stress this dependence. 

We will be particularly interested in how the average case complexity 
depends on E and d as well as how it depends on A. Since Astd C Aall, we 
have 

compavg( &; d, Aa”) 5 compavg(&; d, Astd), 

The average case complexity functions in A”” and Astd are usually closely 
related and compavg(&; d, AStd) cannot be much larger than compavg(&; d, 
ha”), as we see in the next section. 

3. TRACTABILITY OF LINEARMULTIVARIATE PROBLEMS 

Consider a linear multivariate problem LMP = {LMPd}. Let compavg(c; 
LMPd) denote the average case complexity of LMPd. Suppose we know 
that 

COIllpavg(&; LMPd) = @ (C (;)““‘) , 

where the multiplicative factor in the 0 notation may depend on d. Obvi- 
ously, the cost c of one functional evaluation also depends on d, i.e., c = 
c(d). 

If limh+,p(d) = +a then for large d, the average case complexity is 
huge even for moderate E. Thus, LMPd cannot be solved. In this case we 
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say that the linear multivariate problem LMP is intractable. 
We wish to investigate for which linear multivariate problems LMP the 

exponents p(d) do not tend to infinity and can be uniformly bounded, i.e., 
p(d) : p. This motivates the following definition. 

A linear multivariate problem LMP = {LMPd} is called tractable in the 
average case setting if there exists a nonnegative number p such that for 
all d, 

cornpaYs; LMPd) = 0 (C (:I’) . (3.1) 

As before, the multiplicative factor in the big 0 notation may depend on 
d. Thus, tractability means that the average case complexity is asymptoti- 
cally in E bounded by a polynomial in l/~ whose degree does not exceed p 
for all d. 

Obviously, (3.1) does not uniquely define p. Furthermore, (3.1) allows 
us to ignore a polynomial factor in log 11~ whose degree may depend on d. 
Indeed, if for all d 

compavg(&; LMPd) = 0 (c (:)‘I (log ~)p’i”) 

then we can absorb (log l/.s)P2@) by taking p > pi. 
From a practical point of view, we would like to have p in (3.1) as small 

as possible. This motivates the definition of the exponent p* = p*(LMP) 
of a linear multivariate problem LMP which is given by 

i 

inf{p: p E P} ifPZ0, 
p* = 

+w ifP=0, 

where P is the set of all nonnegative p for which (3.1) holds. Thus, the 
exponent P* of LMP is, roughly, the smallest p for which (3.1) holds. If 
for all d 

compavg(s; LMPd) = 0 (c (i)” (log i)“““‘) 

then, obviously, p* = ~1. 
Tractability of a linear multivariate problem depends on all its parame- 

ters. In particular, it depends on A. To stress the role of A, we say that a 
linear multivariate problem is tractable in A iff (3.1) holds for A. 

We are ready to study tractability in Astd and Aat’. Obviously, tractabil- 
ity in Astd implies tractability in Aa”. We now show that, under mild 
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assumptions, the converse is true, i.e., tractability in A”’ implies tractabil- 
ity in hstd and the difference between their exponents is at most 2. We also 
present a simple condition to check tractability in Aa”. 

Let ]I*]]d denote the Lz(D) norm, 

llflld = ((, f2(t> dt) I’*. 

We assume that for all d there exist two nonnegative constants K, = 
K,(d) and K2 = Kz(d) such that 

Assumption (A. 1) means that the linear operator S = Sd maps f into 
&(f) whose G norm does not exceed a multiple of the L2(D) norm off. 
Since & is continuous, (A.l) holds, in particular, if the embedding of F 
into 152(D) is continuous. 

Assumption (A.2) means that the values R,(t, t) of the covariance ker- 
nel of the measure p = j& are bounded in the norm of the space L,(D). 

We now relate the average case complexity functions of LMP in Aa” 
and in hstd. 

THEOREM 3.1. Let (A.l) and (A.2) hold. Suppose that for all d there 
exists a nonnegative Kj = KS(d) such that 

compavg(E; d, Aa”) s Kj(c + 2) (i)p(d) V(E E [0, l] (3.2) 

Then 

compavg(E; d, Astd) 5 K4(c + 2) (-!)p(d’i2, VE E [0, 11, (3.3) 

where 

K4 = A(D)K:KzKAl + p(d)/2)(1 + 2/p(d))f@“* 

with the convention that m” = 1. 

Proof. Let v = &-I be the Gaussian measure on the Hilbert space G 
with mean zero and covariance operator C,. Let 

Cv7)j = AjVj, j=l,2,. . ., 
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where {vj} form a complete orthonormal system of G and AI z AZ z * . . 
2 0 with trace(C,) = x:i’= Ai < + cc. It is known, see TWW (1988, p. 254), 
that 

cornpa%; d, Aa”) = cn*(~)(l + u), (3.4) 

where a E [-l/n*(e), 2/c] and 

From the assumed form (3.2) of compavg(d, ha”) we know that 

n*(E) 5 Kj&-p(a. (3.6) 

Let 12 be a given positive integer. It is known that 

(3.5) 

has average error vxFn+,Aj. Here (e, *) denotes the inner product of G. 
Consider a linear functional Lj, Lj : F -+ R, given by 

Lj(f) = (SW3 rlj). (3.7) 

Note that ILj(f)l 5 IIS(f)l( (Ivjl( 5 Krl(flld due to (A. 1). Since F is a subset 
of L*(D), the mapping Lj can be treated as a continuous linear functional 
defined-on a linear subspace of L2(D). 

Let F denote the closure of F in the L2(D) norm. If F # F then we can 
extend the domain of S by setting S(f*) = limi-*+=,S(J), where f* = 
lim.++,J. It is a well defin_ed extension due to (A. I) and the completeness 
of G. This defines Lj on F. 

If F # L2(D) then we can use the Hahn-Banach theorem to extend the 
functional Lj in (3.7) to L*(D) and to preserve its norm. Applying Riesz’s 
theorem there exists a function Uj in L2(D) such that 

and I(ajJ(d I Ki. Using this representation of Lj we may rewrite U(f) as 

u(f) = i: LjCf3rlj~ with Lj(f) = lD q(t)f(t) dt. (3.8) 
J=l 
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Observe that the approximation U uses information which consists of 
weighted integrals off. This type of information is allowed in Aa”. 

We now turn to hstd in which only function values can be used. We 
approximate the weighted integrals in (3.8) by the integrand values at 
some points. More precisely, let t = [tl, t2, . . . , th] E Dk denote k 
arbitrary points from D and let 

Nstd(f; t) = u-(td, f(t2L f . * 9 f(h>l 

denote the information which consists of k functionals from Rstd. We 
approximate Lj(f) by 

Uj(f; t) = i $ aj(ti)f(ti)t 
r-l 

where A = A(D). Define the approximation U(*; t) which uses information 
from AStd as 

u(.fi I) = i uj(f; thj. 
j=l 

Consider the average error of U(.; t), 

e”YW*; tD2 = I, IIW) - U(f; t)l12 Adf) 

= $ I, ((S(f)3 rlJ) - uj(f; f)>' /Ad!) 

+ ,T+, I, ts(.f)~ S)’ P.(df) 

= i i, (Lj(f) - uj(f; t))2 /-4&l + ff Aj. (3.9) 
j=l j-t!+ I 

The average error of U(.; C) depends on t, i.e., on the points ti used in 
the information NStd(.; t). We now integrate both sides of (3.9) with re- 
spect to t, 

1 
xk D' I 

eavg( U(* ; t)j2 dt = $ I, ($ I, (Lj(f) - uj(f; t))' d') /-d&2 

+ g Aj. 

j=n+ I 
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A I, <Lj(f> - Uj(f; t))2 dt = a (I, ~$t)f*(t) dt - i ((, aj(t)f(t) dt)*) 

is the square of the error of the classic Monte Carlo algorithm, we obtain 

Due to (A.2) and the bound on ai we finally get 

1 
2 IDA eavg(U(*, t))’ dt I h(D)K:K2 i + 2 Aj. (3.10) 

i=n+l 

Applying the mean value theorem to the left side of (3.10), we conclude 
that there exists a vector t*, i.e., k points t;“, t2*, . . . , t;;* which form the 
information Nstd(.; t*), such that the average error of U* = U(*; t*) 
satisfies the inequality 

eavg(U*)* = I, /(S(f) - U*(f)(l* p(df) 5 A(D)K:Kz i + 2 Ajs 
j=,r+ I 

Let p = p(d) and let x,, minimize the function g(x) = (x0( 1 - x2))-’ for 
x E [0, 11. Then g(x,J = (I + p/2)(1 - 2/(p + 2))-P’2. 

Take now IZ = n*(x,.e) and k = A(D)K:K2n*(xP.5)/(( 1 - xz)e2). From the 
definition of n*(a), see (3.5), and (3.6), we obtain ~,<~*(x,,EI+j Aj 5 xi&’ and 
k I K.,E-P@-~. This yields 

eayU*) 5 E. 

Thus U* computes &-approximations and uses only function values. To 
estimate the average cost of U* note that U*(f) can be rewritten as 

u*(f) = i f(ti?g; , 
i=l 

where gi(t) = k $ aj(tT)vj(t). 
J-1 

Since the functions gi can be precomputed, the average cost of U* is 
bounded by 
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COSt=“qU*) I (c + 2)k 5 Kb(C + 2)&+‘-2. 

Obviously, compavg(&; d, Astd) 5 compavg(U*), and (3.3) follows as 
claimed. n 

Theorem 3.1 states that the exponents of the average case complexity 
functions in Aa” and hstd may differ by at most 2. The constant 2 cannot be 
improved as can be proven by considering the integration problem, 
S(f) = jDf(t) dt. Thus, K, = 1. Obviously, S E Aa” and compavg(&; d, 
Aa”) zz c. Hence, p(d) = 0 and K3 = 1 in (3.2). 

Wasilkowski (1991) proves that for the Wiener isotropic measure the 
average case complexity in Astd is of order E -2’(‘+i’d. Thus, in this case the 
exponent in (3.3) is 2/( 1 + l/d) and cannot be replaced by a number which 
is smaller than 2 for all d. 

The presence of 2 in the exponent of (3.3) can also be expected in view 
of related results on the average case complexity of integration with re- 
spect to a worst probability measure due to Novak (1988) and Math6 
(1991). 

We stress that the proof of Theorem 3.1 is not constructive. Indeed, we 
use the mean value theorem to conclude the existence of sample points t? 
at which the function f should be evaluated to solve the problem with 
average cost of order (1/e)P(tif2. We address the issue of constructing 
sample points t* in Section 4. 

Remark 3.1. We stress that the relation between the complexity func- 
tions in Aa” and Astd holds in the average case setting. Such a relation does 
not hold, in general, if we switch to the worst case setting. To see this, 
consider the integeration problem. Then the worst case complexity in Aa” 
remains constant whereas the worst case complexity in Astd can be an 
essentially arbitrary increasing function of l/c as proven by Werschulz 
(1985). 

From Theorem 3.1 we immediately conclude that tractability of LMP in 
Aa” and Astd coincide. Indeed, if p(d) is bounded by p for all d in Aa” then 
p(d) + 2 is bounded by p + 2 for all d in Astd. This also shows that the 
difference between the exponents of LMP in Aa” and AStd can be at most 2. 
We summarize this in the following corollary. 

COROLLARY 3.1. Let (A.l) and (A.2) hold. 

(i) A linear multivariate problem LMP is tractable in ha” iff this 
linear multivariate problem LMP is tractable in Astd. 

(ii) Zf p*(A) is the exponent of LMP in A then 

p*(AStd) 5 p*(A”“) + 2. 

As a simple application, consider a linear multivariate problem LMP for 
which S is a continuous linear functional. Since S E Ad’, we have 
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compavg(&; d, Aae) I c and p(d) = 0. Thus, such a LMP is tractable in Aa” 
with exponent p* = 0 and we have the following corollary. 

COROLLARY 3.2. Let (A.l) and (A.2) hold. If S E A”“, then LMP is 
tractable in Astd with exponent at most 2, i.e., 

compavg(& ; d, Astd) = @CC-~). 

Hence, the average case complexity of any continuous linear functional 
in Astd is at most of order ee2. As mentioned before, the proof of this fact is 
not constructive and to find sample points which achieve such a bound 
can be a challenging problem. 

We now provide a simple condition to check tractability of LMP = 
{LMPd} in Aa”, or in A std if (A.l) and (A.2) hold. As in the proof of 
Theorem 3.1, let 

be the Gaussian measure on G with mean zero and covariance operator 
Cu,d with eigenvalues hi = h;(d) such that Al(d) 2 AZ(d) 2 . * . 2 0, and 
trace(C,,d) = 2,; hi(d) < +=. 

THEOREM 3.2. A linear multivariate problem LMP = {LMPd} is trac- 
table in Aa” iff there exists a positive number (Y such that for all d, 

;g, Ai(d) = 0 (($‘“)y asn+ Sx. 

The exponent of LMP is p* = +m if there exists no (Y satisfying (3.11); 
otherwise 

p* = l/sup{a: ff satisjes (3.1 l)}. 

Zf cz satisjes (3.11) then 

compavg(&; d, Aa”) = 0 (C (3”“)) 

and if also (A.1) and (A.2) hold then 

compavg(&; d, AStd) = 0 (c c-!)2”‘a). 

Proof. From (3.4) and (3.6) of the proof of Theorem 3.1 we know that 
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cornpaYs; d, Aa”) = O(cn*(s)). 

Suppose that (3.11) holds. Then (3.5) yields IZ*(E) = O(E-“~) which 
proves tractability of LMP with p = l/a. This also yields that p* 4 l/sup 
A, where A is the set of (Y’S which satisfy (3.11). 

Suppose now that LMP is tractable. Then n*(c) = 0(&-P). Hence, (3.5) 
yields 

,E,lTl+, hi(d) = @&‘I3 as E * O. * 

Setting it = n*(~) we obtain 

fiJ hi(d) = O(n-2’p)y as n + Sm. 
i=n+l 

Thus, (3.11) hold with LY = l/p. Since p can be arbitrarily close top*, we 
conclude that sup A 2 1 /p*. Hence, p* = l/sup A, as claimed for tractable 
problems. 

On the other hand, if LMP is not tractable then the set A is the empty 
and p* = Sm. The rest of the proof easily follows from Theorem 3.1. n 

Theorem 3.2 states that tractability of LMP in either class depends on 
how fast the truncated trace of the covariance operator Cu,d tends to zero. 
Tractability holds iff the speed of this convergence is of the form n-2a with 
(Y independent of d. Theorem 3.2 solves Problem 3 in Traub and Woi- 
niakowski (1991) for linear operators and Gaussian measures. 

We now discuss adaptive information for tractable linear multivariate 
problems. If A = Aai1 then it is known that adaption does not help; see 
Wasilkowski (1986) and TWW(1988, p. 247) where this result is also re- 
ported. 

If A = Astd then adaptive information may be more powerful than non- 
adaptive information. However, as we now show, for tractable problems 
adaption can help only by a multiplicative constant which depends on the 
exponent p* of LMP. 

As in TWW (1988, p. 249), let navg(&) denote the minimal number of 
nonadaptive evaluations which are needed to compute &-approximations. 
Let 

iv = [LI, Lz, . . . , Ll, Li E Astd, II = Ids”‘, (3.12) 

be such information. As explained in TWW (1988, p. 225) we may assume 
that Li(C,Lj) = 6,. Define the linear approximation 
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u(f) = i LjCf>StCJj). (3.13) 
j=l 

Then eavg(U) 5 E and costa”g(U) I (c + 2>n”‘g(~) since S(CpLj) can be 
precomputed . 

From Theorems 5.7.1 and 5.7.2 of TWW (1988, pp. 248-249) we know 
that for any x > 1, 

x2 - 1 
- navg(c) I compavg(e; Astd) 5 (c + 2)na”g(s). x2 I 

Since navg(xs) 5 navg(&), the minimum of the left hand side is at least 
(x2 - l)/x2navg(x~). Hence, 

x2 - 1 
c 7 rPg(xe) 5 compa”g(e ; Astd) 5 (c + 2)na”g(&), vx > 1. (3.14) 

Assume now that LMP is tractable and 

1 p 
compavg(& ; AStd) I Kc ; , 0 VE > 0. (3.15) 

Then (3.14) yields that 

Ilay&) I -g K (i)“, VE > 0. 

Take x which minimize :s the function x P+~/(x~ - 1). That is, x = +w for 
p = 0, and x = I&??@ for p > 0. The minimum is equal to a, with 

1 ifp = 0, 
ap = (3.16) 

fp(1 + 2p-y+2)'2 ifp + 0. 

Observe that a,, is an increasing function of p and 

al = 3V%2, a2 = 4, a4 = 6$, and 

UP = $pe(l + o(l)), as p + +m. 

Hence, 

1 p tP"g(e) 5 u,K ; , 0 
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and the approximation U given by (3.13) that uses nonadaptive N given 
by (3.12) computes e-approximations with 

costavg(U) 5 (c + 2)n”‘g(c) 5 a,K(c + 2) (ir. 

That is, the average cost U is at most up times larger than the bound on the 
average case complexity in (3.15) since, usually, c 9 1 and the difference 
between c and c + 2 is negligible. Note that p in (3.15) can be taken 
arbitrarily close to the exponent p* of LMP. This leads to the following 
corollary. 

COROLLARY 3.3. For a tractable linear multivariate problem with ex- 
ponent p” in Astd, adaption helps at most by a multiplicative factor a,,*. 

Tractability of a linear multivariate problem LMP depends, in particu- 
lar, on the linear operators S d. We now show that sometimes it is enough 
to ascertain tractability of one specific linear multivariate problem and 
conclude tractability of other LMPs. 

This specific problem is called multivariate function approximation and 
is defined as a linear multivariate problem APP = {APPd}, where Sd = Id is 
a continuous embedding operator, Id : F + &(D) with Id(f) = f and 
IlZ,(f)lld 5 K*/fjIF, Vf E F, for some constant K* = K*(d). The other 
parameters F, CL, A of APPd are defined as in Section 2. As always, A E 
{ha”, Astd}. Note that (A.l) trivially holds for APP with KI = 1. 

THEOREM 3.3. Suppose that multivariate function approximation 
APP is tractable in A with exponent p *. Consider a linear multivariate 
problem LMP which differs from APP by the choice of the operator Sd, 
S,J : F --$ G. Zf (A. 1) holds for Sd then LMP is tractable in A with exponent 
at most equal to p*. 

Proof. Take a linear U* which solves APPd with average error at most 
EIKI, 

u*(f) = i Lj(f)ld(CpLj), 
j=l 

where Lj(CFLi) = 6i,j. Due to tractability of APP in A and Corollary 3.3 we 
can take n = O(E-J’*-~) for a positive 6. The average cost of U* is at most 
(c + 2)n = O(cs-p*-*) since zd(cpLj) can be precomputed. 

For LMP = {LMPd} with a linear operator & which satisfy (A. l), define 

u(f) = 5 Lj(f)Sd(CpLj)* 
i=l 
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Observe that U is well defined since C,Lj E F and U(f) E G. From (A. 1) 
we have 

and therefore 

@“g(U) % KIeavg(U*) 5 E. 

Furthermore costavg(U) I (c + 2)n = O(CE-~*-~) since S(CpLj) can be 
precomputed. This yields 

compavg(&; LMPd) = O(cs-p*-*). 

Hence, LMP is tractable in A and its exponent p*(LMP) is bounded by 
p* + 6. Since 6 arbitrary, p*(LMP) % p*, as claimed. n 

4. CONSTRUCTION OF SAMPLE POINTS 

We analyze the construction of optimal (or nearly optimal) sample 
points for linear multivariate problems in the average case setting by 
utilizing relations between average case and worst case settings. In this 
way, we reduce the construction of optimal sample points in the average 
case setting to the same problem in the worst case setting. The construc- 
tion of optimal sample points in the worst case setting is known for a 
number of cases. This will enable us in Part II to exhibit optimal (or nearly 
optimal) sample points for multivariate integration and function approxi- 
mation in the average case setting. 

In Section 4.1 we consider the approximation of continuous linear func- 
tionals, while in Section 4.2 we consider the general case of approximat- 
ing continuous linear operators. 

4.1. Continuous Linear Functionals 

We analyze linear multivariate problems LMPd = {F, p, G, S, AStd} for 
which G = R. That is, S is a continuous linear functional, S: F + R. We 
assume that S satisfies (A.l) which now means that S is also continuous 
with respect to the norm of L2(D). Since F is a subspace of L@) we can 
claim, as in the proof of Theorem 3.1, that 

W) = I, PWW dt, Vf E F C L2(D). 

Here, p is a fixed function from the space L@). 
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A linear multivariate problem with G = R will be called multivariate 
weighted integration and denoted by pINT = {pINTd}. If p = I then we 
call such a problem multivariate integration and denote by INT = {INTd}. 

Obviously, pINT is tractable in Aa” with the exponent p* = 0. Since p E 
&(D), S satisfies (A.l) with K, = /plld. Hence, assuming (A.2), @NT is 
tractable in hstd with exponent p* 5 2, see Corollary 3.2. 

We now show that the average case complexity of pINT is closely 
related to the worst case complexity of the same S restricted to a specific 
subset of F. This specific subset of F is the unit ball BH, of a reproducing 
kernel Hilbert space HF which is defined in terms of the Gaussian measure 
p of the space F. 

The space H* is the completion of finite dimensional spaces of the form 

span(R,(*, XI), R,(*, x2) . . . , R,(., 4) 

for any integer k and any points xi from D. As before, R, is the covariance 
kernel of p, see (2.1). The completion is with respect to the norm lljP = 
t.3 *>y, where the inner product is defined by 

( f ,  g>p = i f$ ajbiRp(ti 9 xj) 

j=l i=l 

for any f = E.j”=i ajR,(* , Xj) and g = C z i biR,(*, t;). 
The space HP is a subset of C,(F*) C F since R,(., x) = C,L, E C,(F*), 

where C, is the covariance operator of p and L,(f) = f(x). In the repro- 
ducing kernel Hilbert space HP we have 

f(x) = U-9 R,(. 7 xl),, VfE HP, Vx E D. 

We define a linear multivariate problem pINTd = (BH,, R, S, hstd). This 
problem will be considered in the worst case setting. Its worst case com- 
plexity, compWor(e; pINTd), is defined as the minimal cost over all approx- 
imations U whose error does not exceed E. Here, cost and error of U are 
defined as in Section 2 with the integrals replaced by the supremum over 
the unit ball BH,, see TWW (1988, Chap. 3). 

We now show that the average case complexity of multivariate 
weighted integration in the class F, 

pINTd = (F, p, G, S, AStd), 

is closely related to the worst case complexity of multivariate weighted 
integration in the unit ball BH,, 

pINTd = (BH,, iw, S, Astd). 



356 H. WOkNIAKOWSKI 

THEOREM 4.1. (i) For any x > 1 we have 

c x* - 1 
- - compWor(xe; pZNTd) I compaQ(e; PZNT~) c+2 x2 

c+2 
5 - compWOr(a ; pZNTd). 

C 

(ii) rf 

then 

compWo’(i?; md) 5 apK(c + 2) (k!“, 

where up is given by (3.16). 

Proof. The basic step of the proof is to use a known relation between 
the average and worst errors of linear algorithms that use nonadaptive 
information. This relation has been used in many papers as indicated in 
the introduction. 

Consider nonadaptive information 

WI = WI), f(xz), . * . 7 f(&>l 

with fixed xi from D, and a linear approximation 

u(f) = i ajf(xj), Uj E  I w .  

j=I 

To stress the dependence on the class F, let 

eavg(U; F) = (I, (W) - u(f))*P(df)j”* 

(4.1) 

denote the average error of U in F. Let 

ewor(U; BH,) = 2;; IW? - W?l 
P 

denote the worst error of U in the unit ball BH, of H,. Then it is known 
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that the average error of U in F coincides with the worst error of U in 
BH, , 

eavg(U; F) = ewor(U; BHJ = (jh*l(,, (4.2) 

where 

h*(x) = S(R,(x, .)I - U(Rp(x, .)I = I, p(t)Rp(x, t) dt - i ujRp(x, xj)a 
j=l 

Let IZ~“~(E) be, as in Section 3, the minimal cardinality of nonadaptive 
information needed to compute an &-approximation. Since p is Gaussian 
there exists a linear U that uses nonadaptive information of cardinality 
P’g(e) such that e”“g(U) 5 E and cosP’g(U) I (c + 2)n”“g(&). This linear U 
is of the form (4.1), with aj and xj chosen to minimize the average error. 

Let 

e, = inf inf 
XI ,... ,&ED a I,..., ~,EIW 

p(t)Rp(., t) dt - i ajRp(*, xjll/ (4.3) 
J=I w  

be the minimal norm of the function h* in (4.2). Due to (4.2), e, is also the 
minimal average error of pINT which can be achieved after n nonadaptive 
function evaluations. We thus have 

navg(c) = min{n: e, I E}; 

see also TWW (1988, p. 304). From (3.14) we know that navg(c) is closely 
related to the average case complexity by 

x2 - 1 
c - navg(xe) s compavg(&; pINTd) 5 (c + 2)n”“g(~), 

X2 
Vx > 1. (4.4) 

We now consider the worst case complexity of pINTd. It is known, see 
Bakhvalov (1971), that adaption does not help in the worst case setting for 
linear functionals S. Let nwor(c) be the minimal cardinality of nonadaptive 
information which allows us to compute e-approximations in the worst 
case setting for pINTd; see TWW (1988, p. 101). Due to Smolyak’s theo- 
rem, see e.g., TWW (1988, p. 76), the worst error of algorithms that use 
nonadaptive information is minimized by a linear U. Due to (4.2), e, is 
thus the minimal worst error of pINT which can be achieved after n 
adaptive function evaluations. Thus 

rPy&) = fey&). 
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It is known that 

CFP’(E) 5 compWor(E; pINTd) 5 (c + 2)nwor(&). (4.5) 

From this and (4.4), (i) of Theorem 4.1 easily follows. 
To show (ii), note that the bound on compavg(&; pINTd) and the left 

hand side of (4.4) imply that navg(c) = nwor(&) 5 xJ’+“I(x2 - l)K-P. Taking 
x = +m for p = 0 and x = d(p + 2)/p for p > 0, (ii) follows from the right- 
hand side of (4.5). n 

Since c + 2 -‘I c, Theorem 4.1 states that the average case complexity 
of pINTd is no greater than the worst case complexity of pINTd. These 
two complexity functions can differ only if adaption helps in the average 
case setting. However, as (ii) of Theorem 4.1 states, if the average case 
complexity is bounded by Kc&-P then adaption can help at most by a 
multiplicative factor aP. Since now p 5 2, the factor aP is bounded by 
6.75. 

How much adaption can help depends on the sequence {ei}, see (4.3), 
as analyzed by Wasilkowski (1986). In particular, if {ez} is convex, i.e., 
ez I (ei-i + ei+,)/2, Vn > 2, adaption does not help and compavg(E) 2 
c(L+“~(E) - 1). If {et} is semiconvex, i.e., (doff, I et 5 fi2pn for positive 
a and /3 and convex sequences (Y,, and &, , then compavg(&) 2 c(navg(c/31a) 
- 1). As we shall see in Part II, e, is often of the form O(n-“@(log n)q) for 
some positive p and 4. In this case, the sequence {et} is semiconvex. We 
summarize this in the following corollary. 

COROLLARY 4.1. Let {ez} be given by (4.3). 

(i) Zf{ef} is conuex then 

& compWor(c; pZNTd) - c 5 cornpaY&; pZNTd) 

c+2 
5 - compWor(E; pZNTd). 

C 

Thus, for large c, 

compavg(&; pZNTd) = compWor(E; pZNTd) = cnavg(&) = cnWor( E) 

= c min{n: e, I E}. 

(ii) Zf {et} is semiconvex, a2q, 5 ei 5 p”&,, then 

---& compWo’(c $; pZNTd) - c 5 compavg(&; pZNTd) 

c+2 
5 - compWor(E; pZNTd). P 
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In particular, ife, = O(n-“p(log n)q), where p = p(d) > 0 and q = (d), 
then 

compavg(q pZNTJ = O(compWor(.s; plNTJ) = 0 (c (t)’ (log i)““) , 

and the exponent p* of pZNT is given by 

p” = sup{p(d): d = 1, 2, . . . } 5 2. 

We now show how to obtain optimal (or nearly optimal) sample points 
for pZNTd in the average case setting. Let n = nwor(e). Without loss of 
generality, we may assume that the infima in (4.3) are attained for xj* and 
uj*. Let 

(4.6) 

Then (4.2) yields 

ewor(U~; BH,) = e, 5 E, and COStWor(U,*) 5 (c + 2)nwor(&). 

For large c, from (4.5) we conclude that 

compWor(E; pZNTJ = c costWor( UT). 

This means that the sample points {XT, x2*, . . . , x,*} and U,* are optimal 
for pZNTd in the worst case setting, 

Since eavg(U,*; F) = e, I E and cosP’g(U,*) I (c + 2)n, proceeding as 
in Corollary 4.1, we conclude that the sample points {x 7, x2*, . . . , xx} 
and U,* also enjoy optimality properties for pINTd in the average case 
setting. More precisely we have the following corollary. 

COROLLARY 4.2. Let {e:} be given by (4.3). 

(i) Let n = nwor(&). Zf {e f} is conuex then for large c the sample 
points {XT, x2*, . . . , x,*} and U,* given by (4.6) are optimal for pZNTd in 
the average case setting, 

compavg(&; pZNTJ = costa”g(U,*) = crYor( 

(ii) Let ei = O(i-“p(log i)q), where p = p(d) > 0 and q = q(d). Let 
n be the smallest integer for which e, 5 E. Then, modulo a multiplicative 
factor which may depend on d, the sample points {x:, x:, . . . , x,*} and 
U,* given by (4.6) are optimal for pZNTd in the average case setting, 
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compavg(&; pZNTJ = O(costa”g(U,*)) = 0 (fz (b)” (log i)““) . 

The essence of Theorem 4.1 and Corollaries 4.1,4.2 is that the average 
case complexity of multivariate integration pINTd, optimal sample points 
and U,* can be found by using the known results about the worst case of 
multivariate integration pINTd. In Part II we shall provide a number of 
examples. 

Remark 4.1: Worst Case in Reproducing Kernel Hilbert Spaces. Sup- 
pose that (A.2) holds. Then (ii) of Theorem 4.1 holds with p = 2. This 
means that the worst case complexity of pINT is at most of order (l/c)*. 
This fact can be proven directly without using the relation to the average 
case setting. Indeed, consider an arbitrary reproducing kernel Hilbert 
space H of functions defined on D with kernel R. For p E Lz(D) assume 
that 

w> = I, p(of(t) dt, VfEH, 
is a continuous linear functional and that (IR(., -)I]L,(~) < +m. 

Define a linear approximation U(f) = h(D)n-’ cjn=l p(tj)f(tj). The sec- 
ond equality of (4.2) states that the worst error, ewor( U; BH), of U in the 
unit ball BH is equal to the norm of h* with 

h*(x; t) = I, p(t)R(x, t) dt - y i p(tj)R(x, tj), 
j=l 

witht=[t,,tz,. . . , t,]. Let A = h(D). Integrating the square norm of 
h* with respect to tj we obtain 

A =- (I II D 
p2(t>R(t, t) dt - L A D D p(t)p(x)R(x, t) dt dx JJ 1 . 

Due to the mean value theorem, there exist points tl , t2, . . , , t, such that 

ewor(U; BH) = (jh*(*; t)(l 

MD) 5 J-(J n D 
p*(tW(t, t) dt 

1 112 -- JJ A(D) D D 
p(t)p(xMx, t) dt dx ) 

I Ibll~~~~dN~ ->~I:;DI. 
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This implies that the worst case complexity is at most of order ( I/E)~. We 
stress, however, that the proof is not constructive. 

We now exhibit a relation between multivariate weighted integration 
pINT in the average case setting and multivariate function approximation 
APPwor*2 = {APPp’,2} in th e worst case setting. Multivariate approxima- 
tion APPy2 is defined by (BH,, L2(D), Id, Astd), where Id is an embed- 
ding between BH, and L2(D). Since BH, is a subset of Lz(D), Id is well 
defined. Recall that ]]‘]ld denotes the norm of L@). 

For multivariate weighted integration pINTd , consider nonadaptive in- 
formation N(f) = [f(xJ, f(x2), . . . , f(x,)] and a linear approximation 
U,(j) = E&r UjfcXj). Then (4.2) states that 

eavg( Up ; F) = ewor( Up ; BH,). 

It is known that if we choose aj to minimize the worst error ewor( U, ; BHJ 
then 

From this we have (see also Novak, 1988) 

ewor(up; BH,) 5 bjld SUP kf-lld, 
f(x,)=O.lIJllr~ 1 

sup ewor(U,,; BH,) = SUP I1.f Iid- (4.7) 
IlPlld~l f(x,)=o.llfI/,~I 

Let e yg( pINTd) denote the minimal average error of any algorithm that 
uses nonadaptive information of cardinality 12 for multivariate weighted 
integration pINTd. Let e y(pINTd) be the corresponding minimal worst 
error for pINTd. Since linear algorithms minimize the errors, (4.2) yields 

e yg( pINTd) = e y(pINTd) 

Consider now multivariate function approximation APPwor*2 = 
{APPyV2} in the worst case setting. Let 

eY(APPdwor72) = infX. if s-q, (If - 4(&l) . . . , .fh))/d 
2 

be the minimal worst error of any algorithm that uses nonadaptive infor- 
mation of cardinality n for APPr,2. It is also known (see Micchelli and 
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Rivlin, [1977]; this result can also be found in TWW, 1988, p. 80) that 
linear algorithms minimize the error and 

e y(APPY*) = inf sup llf lld. 
1 I..... Xn f(*,)=O,llfll,~I 

This, (4.7), and (4.8) yield 

sup eFg(pINTd) 5 ey(APPyr12). 
IlPlIdC 1 

(4.9) 

This means that the average error of multivariate weighted integration 
pINTd with an arbitrary weight p, (IpJld 5 1, is at most equal to the worst 
error of multivariate function approximation APPY,‘. 

This permits us to relate the average case complexity of pINTd to the 
worst case complexity compWor(E; APPdwor,2). Since adaption does not help 
in the worst case setting for APPY.*, see e.g., TWW (1988, p. 59), we 
have 

compWor(E; APPF,‘) = (c + a) min{n: ep,(APPyr*2) I E}, a E [O, 21. 

Repeating the second part of the proof of Theorem 4.1, we conclude 
from (4.9) the following corollary. 

COROLLARY 4.3. (i) We have 

sup cornpaY&; pINTJ % 
c+2 

IMlrl~ 1 
7 compwor( s; APPdwor,*). 

(ii) If e y”( APP y**) = O(n-““(log n)q), where p = p(d) > 0 and 
q = q(d), then 

,,p;p, cornpaY&; pINTJ = 0 (c (f)” (log i)““) g 

and the exponent p* of PINT is bounded by 

p*ssup{p(d):d= 1,2,. . .}. 

Corollary 4.3 states that the weight p, jlpljd 5 I, may increase the aver- 
age case complexity of pINTd up to at most the worst case complexity of 
multivariate function approximation of APPy.2. 

Remark 4.2: “Easy Weights.” One may ask the rather theoretical 



LINEAR MULTIVARIATE PROBLEMS, I 363 

question as to whether there are weights p, jlplld = 1, for which the aver- 
age case complexity of pINTd is essentially easier than 

sup compavg( E; pINTJ. 
IlPlld 5 1 

Indeed, it may happen that for some weights p, multivariate weighted 
integration is trivial since compavg(&; pINTJ 5 c f 1. To show this, as- 
sume that R, is continuous at a point (t *, t*) E D*. For a given positive E, 
choose 6 such that 

(R,(t, x) - Rp(t*, t*)l 5 c2 for t, x E Ds, 

and such that CY = JtED, dt 5 f. Here, D6 = {t E D: (It - t*J(, 5 S}. 
Define the weight 

&l/2 if t E Ds, 
p(t) = 

0 otherwise. 

Then lIplId = 1. Define the linear approximation 

u(f) = v&j-(?*>, 

The average error of U is given by 

pq u)* = 1 II ,+EDg R,(t, xl dt dx - 2 I,,,, RJt, t*> dt + aR,(t*, t*) a , 

1 =- 
a II l,XED& 

(RJt, x) - R,(t*, t*)) dt dx 

+ 2 I,, 
(R,(t, t*> - RJt*, t*)) dt 

5 &*a + 2&b = 3as* 5 E2. 

Hence, eavg( U) I E and the cost of U is at most c + 1, as claimed. 
Observe that if there exists a continuity point (t*, t*) of R, for which 

Rp(t*, t*) = 0 then we can set U(f) = 0 since f( t*) = 0 with probability 
1. Then compavg(e; pINTJ = 0. This is the case for the folded Wiener 
sheet measure with t* = 0; see Part II. 

From the analysis presented above it is clear how to use sample points 
and algorithms, that are optimal for multivariate function approximation 
in the worst case setting, for multivariate weighted integration in the 
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average case setting, see also Sacks and Ylvisaker (1970b). Indeed, we 
may choose the sample points xj* and the functions h,? such that 

TX t) = 2 f(xJvzf(r) 
j=l 

minimizes the worst case error for APPF’, 

ewor( T,*; BH,) = e,“O’(APPy’2). 

For multivariate weighted integration pINTd, define 

Then (4.2) yields 

eavg( Up; F) = ewor(Up; BH,) = sup ID p(t)(f(t) - T,(f, t)) dt 
lIfllP”I 

5 IIPlldllf - Mf)lld 5 lblld @-YTn; B%L). 

Thus, if we choose II such that ewor( T,*; BH,) 5 ~/jJp((~ then eavg(Up; 
F) 5 E. Since the integrals of phj* can be precomputed, the cost of U is at 
most (c + 2)n which is essentially the same as the cost of T,*. From this 
and Corollary 4.3 we conclude the following. 

COROLLARY 4.4. Let JJp((d 5 1. Multivariate weighted integration 
pINTd can be solved in the average case setting by using sample points 
xj* andfunctions hj* of (4. lo), which are optimal for multivariate function 
approximation in the worst case setting, with average cost at most (1 + 
2/c)compwor(e; APPT.‘). 

4.2. Continuous Linear Operators 

We now study general linear multivariate problems LMPd = {F, p, G, 
S, Astd}. We assume that S satisfies (A. 1). As already mentioned, we may 
attack LMPd by two approaches. The first one is to express LMPd as a 
number of continuous linear functionals and apply the analysis of Section 
4.1. This is done in Section 4.2.1. The second approach is to estimate &i 
by a multiple of Id and switch to the multivariate function approximation 
problem APPd = {F, p, L*(D), Id, Astd}. We show that APPd is related to a 
multivariate approximation problem in the worst case setting. This is 
done in Section 4.2.2. 
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4.2.1. Approach I: Weighted Integrals. As in Section 3, see (3.8), let 

u(f) = i (s(f), qj)qj = i Lj(f)Tj, Lj(f) = I,, aj(t)f(t) dt. (4.11) 
j=l j=l 

Then U has average error ux ._ Jzk+l Aj and Ilajl(d 5 Ki . The approximation 
U uses information from Aa1l which is now not allowed. Since we can use 
only function values, we must replace L,(f) by appropriate approximation 
composed of, say, n function values. 

As in Section 4.1, we replace Lj(f) by U,)(f) of (4.10) and we get 

where 

gj = $ (I, ai(t)hj*(t) dt)qi. 

Observe that gj’s do not depend on f and they can be precomputed. 
Thus, Uitd is linear, uses information from hstd, and can be computed at 

cost (c + 2)n. It is easy to estimate the average error Uitd. Indeed, using 
the estimates of Section 4.1, we obtain 

eavg( Uitd)2 = eavg( U$; LMPd)2 5 K:keY(APPyV2)2 + 2 Aj* 
j=k+l 

We now choose k to minimize the estimate of eavg( Uitd). Assume that 

ep’(APPy2) = 0 (w), (4.13) 

wherep = p(d) andp, = PI(d) are positive, and q = q(d) and ql = q,(d). 
Then taking 

we obtain 
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Obviously, 

This proves that l/p, 5 l/p + l/2, and if l/p, = l/p + l/2 then 4 I ql. 
In general, there is no further relation between (p, 4) and (p,, 4,). 

Indeed, it may happen that the weights aj are “easy” and the difference 
between Lj(f) and Lj(Tz(f)) is much smaller on the average than 
ewor(APPd wor,2). (The extreme case is to take S = 0. Then aj = 0 and p = 
q = 0, although (p, , 4,) could be positive.) 

On the other hand, if I/p, = I/p + l/2 then 

ewqU;td) = 0 log n) y+2(4,-qV(p+2) 

nlb 

Thus, modulo a power of log n, the average error of Uitd is minimal. To 
guarantee that eavg( Uitd) _i E we take n = O(&-p(log I/E)PY+(YI-Y)‘(“P+“*)). 
Then the average cost of Uitd is, modulo a power of log l/s, equal to the 
average case complexity cornpaY&; Aa”). This shows that Rstd is almost as 
powerful as Aal’. We summarize this discussion in the following theorem. 

THEOREM 4.2. Suppose that S satisjies (A. 1) and that in (4.13) l/p, = 
I/p + I/2. Then the average case complexity functions cornpaY&; Astd) 
and compavg(&; Aa”) of LMPd differ at most by a power of log I/E, 

COmpavg(E; Astd) = 0 ic (i)” (log d)““““‘~q”i”y+“2’) , 

compavg( E; AStd) = 0 (c (-!r (log iy) . 

For n = O(&-P(log 1/&)Pq’(Yl~q)‘(“P”‘2)), the sample points x7 and Uitd 
given by (4.12) are, mod&o a power of log l/c, optimal in the average 
case setting for LMPd. 

Zf l/pi(d) = I/p(d) + l/2, Vd, then the exponents of LMP in Astd and 
Aa” are the same and are equal to 

P *=sup{p(d):d= 1,2,. . .}. 
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In Part II we shall show that the assumptions of Theorem 4.2 are 
satisfied for some multivariate function approximation problems. 

4.2.2. Approach 2: Worst Case Multivariate Function Approxima- 
tion. As explained in Section 3, we can use the results on multivariate 
function approximation to linear multivariate problems LMPd which differ 
from APPd only in the definition of the operator S. Hence, it is enough to 
analyze multivariate function approximation APP = {APPd} with APPd 
= {F, p, Lz(D), Li, Astd). 

In Section 4.1 we have already used relations between multivariate 
weighted integration in the average case and worst case settings. In this 
section we obtain similar relations for multivariate function approxima- 
tion. 

Consider a linear U which uses sample points xj, 

u(f) = i: f(Xj)Sj, gj E LZ(o). 
j=l 

(4.14) 

We now show that the average error of U is equal to 

eavg( U) = eavg( U; APPJ = (ID llh*(., x)11: dy)“‘, (4.15) 

where 

h*(., X) = R,(*, X) - $ gj(X)Rp(*, X) E Hp. 
j=r 

As always, R, is the covariance kernel of or. and 11jl,, is the norm in the 
reproducing kernel space HP, see Section 4.1. Indeed, observe that 

= Rp(x, XI - 2 2 gj(x)Rp(x, Xj) ;= I 

On the other hand, since (R,)., x), R,(., t)), = R,(t, x), we have 
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+ i$, gj(x)gdx)~,(xi, xj) 1 dx, 

which proves (4.15). 
Consider now the same linear U for multivariate function approxima- 

tion 

in the worst case setting. Then for the worst error U we have 

ewor( U; APP d wor’2)2 = ,,:9, ID (f(X) - I$ f(xj)gJx))2 dx 

From (4.15) we thus obtain 

ewor( u; APPy2) I eavg( u; APPd). (4.16) 

Finally, consider the same U for multivariate function approximation in 
the L,(D) norm 

APP yrn = {BH, , k(D), &, , hstd} 

in the worst case setting. We now assume that HP is a subset of L,(D) and 
that the embedding Id maps HF into L,(D). We also assume that the 
functions gj of (4.14) belong to L,(D). The worst error of U is now equal 
to 
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It is easy to show that 

,?r(U, APPT.“) = ess sup llh*(*, -x)\IcL. 
XED 
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(4.17) 

Indeed. 

To prove the reverse inequality, assume without loss of generality that 
there exists x0 such that 

llh*<., x0)(1, = esfEyP llh*(*3 x)llpe 

Then taking f= h*(*, xo)lllh*(*, x0)(1, we get ewor(U; APPdwor’? 2 llh*(., 
xo)ll, which implies (4.17). Since 

esktip llh*(*, x)11+ 2 & ((, llh*(., X)IIi ~X)“‘Y 

we conclude from (4.17) and (4.15) that 

eavg( U; APPJ 5 m ewor( U; APPF”). 

This and (4.16) yield the following lemma. 

LEMMA 4.1. For multivariate function approximation, the average 
error of a linear U of (4.14) is boundedfrom below by the worst error in 
the L2 norm and, ifgj E L,(D), it is boundedfrom above by a multiple of 
the worst error in L, norm, 

ewor( U; APPrq2) 5 e avg( U; APPJ 5 m ewor( U; APPyqcc)* 

In general, as we see later, the first inequality of Lemma 4.1 is not 
sharp. The second inequality is, modulo a power of log n, sharp for some 
multivariate function approximation problems. 

We now relate the average case complexity of APPd to the worst case 
complexity of APPF2 and APPy,=. Let eY(APPy2), ey(APPy,“) 
and eY(APPJ denote the minimal worst (or average) error of any algo- 
rithm that uses nonadaptive information of cardinality n for the corre- 
sponding problem APPy”‘,2, APPF” or APPd. Since linear algorithms 
minimize the error for all three problems, Lemma 4.1 implies 
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ey(APPy’2) I eyg(APPd) I k%(@ eF(APPyos). 

Since adaption does not help for APPy92 and APPYIT, we have follow- 
ing formulas for their worst case complexity functions: 

compWor(&; APPY2) = (c + ai) min{n: eF(APPY9’) 5 F}, 
aI E [O, 21, 

compwor( z; APP y,=) = (c + a2) min{n: e,WO’(APPY=) or E}, 
a2 E K4 21, 

Proceeding as in the second part of the proof of Theorem 4.1, the follow- 
ing theorem is obtained from Lemma 4.1. 

THEOREM 4.3. (i) For any x > 1 we have 

x2 - 1 
a - compWor(xs; APPY,2) 5 compavg(e; APPJ 

x2 

I a-r compWO’(& APP,““‘,“), 

where a = c/(c + 2) and b = l/l&(@. 

(ii) Suppose that 

ey(APPd ~0~2) = ~1 (w), enW"'(App~~") = 0 (w), 

where pi = pi(d) and p2 = p2(d) are positive, and ql = q,(d) and q2 = 
q2(d). Then 

R (c (:)“I (log i)“‘“‘) = comp”s(e; APPJ = 0 (C (a)” (log i)“?“) . 

In general, the lower bound in Theorem 4.3 on compY&; APPJ is not 
sharp. We can sometimes obtain a better lower bound on compavg(&; 
APPJ by using the corresponding average case complexity for Aa”. In- 
deed, assume that for multivariate function approximation (F, p, MD), 
Id, A”“) we have 

compavg(&; Aa”) = 0 (c (ir (log i)II). 

for some p and q. If p = p2, then the upper bound in Theorem 4.3 on 
compavg(&; APPJ is sharp modulo a power of log(l /E). In this case, we can 
find optimal sample points and an optimal linear U. More precisely, let the 
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sample points xj* and the function hp, j = 1, 2, . . . , n, be chosen such 
that 

U;(f) = 2 f(x,%:, h,* E L(D), (4.18) 
j=l 

minimizes the worst case error for APPT.“, 

ewor( U;; APPy’.==) = e ;“‘( APP rrX”). 

Then from Theorem 4.3 we conclude the following corollary. 

COROLLARY 4.5. Suppose that p2 = p. 

(i) Then the average case complexity functions cornpaY&; hstd) and 
cornpaY&; Aa”) of multivariate function approximation APPd in the aver- 
age case setting as well as the worst case complexity compWor(E; 
APP y-m ) differ at most by a power of log l/c, and 

where a E [O, q2 - q]. 

(ii) For n = @I(&-p(log lI.s)Pq?), the sample points xj* and U,* given 
by (4.18) are, modulo a power of log l/e, optimalfor multivariate function 
approximation APPd in the average case setting. 

(iii) Zf p2(d) = p(d), Vd, then the exponents of APP in hstd and A”” 
are the same and equal to 

P *=sup{p(d):d= I,2,. . .}. 

In Part II we shall show that the assumptionp(d) = p2(d), Vd, holds for 
some multivariate function approximation problems. 
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