1,508 research outputs found

    Generic Points for Dynamical Systems with Average Shadowing

    Get PDF
    It is proved that to every invariant measure of a compact dynamical system one can associate a certain asymptotic pseudo orbit such that any point asymptotically tracing in average that pseudo orbit is generic for the measure. It follows that the asymptotic average shadowing property implies that every invariant measure has a generic point. The proof is based on the properties of the Besicovitch pseudometric DB which are of independent interest. It is proved among the other things that the set of generic points of ergodic measures is a closed set with respect to DB. It is also showed that the weak specification property implies the average asymptotic shadowing property thus the theory presented generalizes most known results on the existence of generic points for arbitrary invariant measures

    On almost specification and average shadowing properties

    Full text link
    In this paper we study relations between almost specification property, asymptotic average shadowing property and average shadowing property for dynamical systems on compact metric spaces. We show implications between these properties and relate them to other important notions such as shadowing, transitivity, invariant measures, etc. We provide examples that compactness is a necessary condition for these implications to hold. As a consequence of our methodology we also obtain a proof that limit shadowing in chain transitive systems implies shadowing.Comment: 2 figure

    Shadowing, asymptotic shadowing and s-limit shadowing

    Get PDF
    We study three notions of shadowing: classical shadowing, limit (or asymptotic) shadowing, and s-limit shadowing. We show that classical and s-limit shadowing coincide for tent maps and, more generally, for piecewise linear interval maps with constant slopes, and are further equivalent to the linking property introduced by Chen in 1991. We also construct a system which exhibits shadowing but not limit shadowing, and we study how shadowing properties transfer to maximal transitive subsystems and inverse limits (sometimes called natural extensions). Where practicable, we show that our results are best possible by means of examples.Comment: 28 pages, 4 figure

    Diffusion of a passive scalar from a no-slip boundary into a two-dimensional chaotic advection field

    Get PDF
    Using a time-periodic perturbation of a two-dimensional steady separation bubble on a plane no-slip boundary to generate chaotic particle trajectories in a localized region of an unbounded boundary layer flow, we study the impact of various geometrical structures that arise naturally in chaotic advection fields on the transport of a passive scalar from a local 'hot spot' on the no-slip boundary. We consider here the full advection-diffusion problem, though attention is restricted to the case of small scalar diffusion, or large Peclet number. In this regime, a certain one-dimensional unstable manifold is shown to be the dominant organizing structure in the distribution of the passive scalar. In general, it is found that the chaotic structures in the flow strongly influence the scalar distribution while, in contrast, the flux of passive scalar from the localized active no-slip surface is, to dominant order, independent of the overlying chaotic advection. Increasing the intensity of the chaotic advection by perturbing the velocity held further away from integrability results in more non-uniform scalar distributions, unlike the case in bounded flows where the chaotic advection leads to rapid homogenization of diffusive tracer. In the region of chaotic particle motion the scalar distribution attains an asymptotic state which is time-periodic, with the period the same as that of the time-dependent advection field. Some of these results are understood by using the shadowing property from dynamical systems theory. The shadowing property allows us to relate the advection-diffusion solution at large Peclet numbers to a fictitious zero-diffusivity or frozen-field solution, corresponding to infinitely large Peclet number. The zero-diffusivity solution is an unphysical quantity, but is found to be a powerful heuristic tool in understanding the role of small scalar diffusion. A novel feature in this problem is that the chaotic advection field is adjacent to a no-slip boundary. The interaction between the necessarily non-hyperbolic particle dynamics in a thin near-wall region and the strongly hyperbolic dynamics in the overlying chaotic advection field is found to have important consequences on the scalar distribution; that this is indeed the case is shown using shadowing. Comparisons are made throughout with the flux and the distributions of the passive scalar for the advection-diffusion problem corresponding to the steady, unperturbed, integrable advection field

    Conservative flows with various types of shadowing

    Full text link
    In the present paper we study the C1-robustness of the three properties: average shadowing, asymptotic average shadowing and limit shadowing within two classes of conservative flows: the incompressible and the Hamiltonian ones. We obtain that the first two properties guarantee dominated splitting (or partial hyperbolicity) on the whole manifold, and the third one implies that the flow is Anosov.Comment: 13 page
    corecore