2,588 research outputs found

    On the Delay of Geographical Caching Methods in Two-Tiered Heterogeneous Networks

    Full text link
    We consider a hierarchical network that consists of mobile users, a two-tiered cellular network (namely small cells and macro cells) and central routers, each of which follows a Poisson point process (PPP). In this scenario, small cells with limited-capacity backhaul are able to cache content under a given set of randomized caching policies and storage constraints. Moreover, we consider three different content popularity models, namely fixed content popularity, distance-dependent and load-dependent, in order to model the spatio-temporal behavior of users' content request patterns. We derive expressions for the average delay of users assuming perfect knowledge of content popularity distributions and randomized caching policies. Although the trend of the average delay for all three content popularity models is essentially identical, our results show that the overall performance of cached-enabled heterogeneous networks can be substantially improved, especially under the load-dependent content popularity model.Comment: to be presented at IEEE SPAWC'2016, Edinburgh, U

    Fundamentals of Inter-cell Overhead Signaling in Heterogeneous Cellular Networks

    Full text link
    Heterogeneous base stations (e.g. picocells, microcells, femtocells and distributed antennas) will become increasingly essential for cellular network capacity and coverage. Up until now, little basic research has been done on the fundamentals of managing so much infrastructure -- much of it unplanned -- together with the carefully planned macro-cellular network. Inter-cell coordination is in principle an effective way of ensuring different infrastructure components behave in a way that increases, rather than decreases, the key quality of service (QoS) metrics. The success of such coordination depends heavily on how the overhead is shared, and the rate and delay of the overhead sharing. We develop a novel framework to quantify overhead signaling for inter-cell coordination, which is usually ignored in traditional 1-tier networks, and assumes even more importance in multi-tier heterogeneous cellular networks (HCNs). We derive the overhead quality contour for general K-tier HCNs -- the achievable set of overhead packet rate, size, delay and outage probability -- in closed-form expressions or computable integrals under general assumptions on overhead arrivals and different overhead signaling methods (backhaul and/or wireless). The overhead quality contour is further simplified for two widely used models of overhead arrivals: Poisson and deterministic arrival process. This framework can be used in the design and evaluation of any inter-cell coordination scheme. It also provides design insights on backhaul and wireless overhead channels to handle specific overhead signaling requirements.Comment: 21 pages, 9 figure

    Analysis and Optimization of Cellular Network with Burst Traffic

    Full text link
    In this paper, we analyze the performance of cellular networks and study the optimal base station (BS) density to reduce the network power consumption. In contrast to previous works with similar purpose, we consider Poisson traffic for users' traffic model. In such situation, each BS can be viewed as M/G/1 queuing model. Based on theory of stochastic geometry, we analyze users' signal-to-interference-plus-noise-ratio (SINR) and obtain the average transmission time of each packet. While most of the previous works on SINR analysis in academia considered full buffer traffic, our analysis provides a basic framework to estimate the performance of cellular networks with burst traffic. We find that the users' SINR depends on the average transmission probability of BSs, which is defined by a nonlinear equation. As it is difficult to obtain the closed-form solution, we solve this nonlinear equation by bisection method. Besides, we formulate the optimization problem to minimize the area power consumption. An iteration algorithm is proposed to derive the local optimal BS density, and the numerical result shows that the proposed algorithm can converge to the global optimal BS density. At the end, the impact of BS density on users' SINR and average packet delay will be discussed.Comment: This paper has been withdrawn by the author due to missuse of queue model in Section Fou
    corecore