136,264 research outputs found

    Graph measures and network robustness

    Full text link
    Network robustness research aims at finding a measure to quantify network robustness. Once such a measure has been established, we will be able to compare networks, to improve existing networks and to design new networks that are able to continue to perform well when it is subject to failures or attacks. In this paper we survey a large amount of robustness measures on simple, undirected and unweighted graphs, in order to offer a tool for network administrators to evaluate and improve the robustness of their network. The measures discussed in this paper are based on the concepts of connectivity (including reliability polynomials), distance, betweenness and clustering. Some other measures are notions from spectral graph theory, more precisely, they are functions of the Laplacian eigenvalues. In addition to surveying these graph measures, the paper also contains a discussion of their functionality as a measure for topological network robustness

    Small-worlds: How and why

    Full text link
    We investigate small-world networks from the point of view of their origin. While the characteristics of small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of such a network architecture. In situations such as neural or transportation networks, where a physical distance between the nodes of the network exists, we study whether the small-world topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied. When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity is maximized, a near random network is obtained. In the intermediate regime, a small-world network is formed. However, unlike the model of Watts and Strogatz (Nature {\bf 393}, 440 (1998)), we find an alternate route to small-world behaviour through the formation of hubs, small clusters where one vertex is connected to a large number of neighbours.Comment: 20 pages, latex, 9 figure

    On the extremal properties of the average eccentricity

    Get PDF
    The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G)ecc (G) of a graph GG is the mean value of eccentricities of all vertices of GG. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease ecc(G)ecc (G). Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number, the Randi\' c index and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.Comment: 15 pages, 3 figure

    Generative models of the human connectome

    Get PDF
    The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.Comment: 38 pages, 5 figures + 19 supplemental figures, 1 tabl

    Centralized and distributed cognitive task processing in the human connectome

    Get PDF
    A key question in modern neuroscience is how cognitive changes in a human brain can be quantified and captured by functional connectomes (FC) . A systematic approach to measure pairwise functional distance at different brain states is lacking. This would provide a straight-forward way to quantify differences in cognitive processing across tasks; also, it would help in relating these differences in task-based FCs to the underlying structural network. Here we propose a framework, based on the concept of Jensen-Shannon divergence, to map the task-rest connectivity distance between tasks and resting-state FC. We show how this information theoretical measure allows for quantifying connectivity changes in distributed and centralized processing in functional networks. We study resting-state and seven tasks from the Human Connectome Project dataset to obtain the most distant links across tasks. We investigate how these changes are associated to different functional brain networks, and use the proposed measure to infer changes in the information processing regimes. Furthermore, we show how the FC distance from resting state is shaped by structural connectivity, and to what extent this relationship depends on the task. This framework provides a well grounded mathematical quantification of connectivity changes associated to cognitive processing in large-scale brain networks.Comment: 22 pages main, 6 pages supplementary, 6 figures, 5 supplementary figures, 1 table, 1 supplementary table. arXiv admin note: text overlap with arXiv:1710.0219

    The specificity and robustness of long-distance connections in weighted, interareal connectomes

    Full text link
    Brain areas' functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections are short, reflecting spatial and energetic constraints. Nonetheless, a small number of connections span long distances, consistent with the notion that the functionality of these connections must outweigh their cost. While the precise function of these long-distance connections is not known, the leading hypothesis is that they act to reduce the topological distance between brain areas and facilitate efficient interareal communication. However, this hypothesis implies a non-specificity of long-distance connections that we contend is unlikely. Instead, we propose that long-distance connections serve to diversify brain areas' inputs and outputs, thereby promoting complex dynamics. Through analysis of five interareal network datasets, we show that long-distance connections play only minor roles in reducing average interareal topological distance. In contrast, areas' long-distance and short-range neighbors exhibit marked differences in their connectivity profiles, suggesting that long-distance connections enhance dissimilarity between regional inputs and outputs. Next, we show that -- in isolation -- areas' long-distance connectivity profiles exhibit non-random levels of similarity, suggesting that the communication pathways formed by long connections exhibit redundancies that may serve to promote robustness. Finally, we use a linearization of Wilson-Cowan dynamics to simulate the covariance structure of neural activity and show that in the absence of long-distance connections, a common measure of functional diversity decreases. Collectively, our findings suggest that long-distance connections are necessary for supporting diverse and complex brain dynamics.Comment: 18 pages, 8 figure
    corecore