942 research outputs found

    Irregular Traffic Time Series Forecasting Based on Asynchronous Spatio-Temporal Graph Convolutional Network

    Full text link
    Accurate traffic forecasting at intersections governed by intelligent traffic signals is critical for the advancement of an effective intelligent traffic signal control system. However, due to the irregular traffic time series produced by intelligent intersections, the traffic forecasting task becomes much more intractable and imposes three major new challenges: 1) asynchronous spatial dependency, 2) irregular temporal dependency among traffic data, and 3) variable-length sequence to be predicted, which severely impede the performance of current traffic forecasting methods. To this end, we propose an Asynchronous Spatio-tEmporal graph convolutional nEtwoRk (ASeer) to predict the traffic states of the lanes entering intelligent intersections in a future time window. Specifically, by linking lanes via a traffic diffusion graph, we first propose an Asynchronous Graph Diffusion Network to model the asynchronous spatial dependency between the time-misaligned traffic state measurements of lanes. After that, to capture the temporal dependency within irregular traffic state sequence, a learnable personalized time encoding is devised to embed the continuous time for each lane. Then we propose a Transformable Time-aware Convolution Network that learns meta-filters to derive time-aware convolution filters with transformable filter sizes for efficient temporal convolution on the irregular sequence. Furthermore, a Semi-Autoregressive Prediction Network consisting of a state evolution unit and a semiautoregressive predictor is designed to effectively and efficiently predict variable-length traffic state sequences. Extensive experiments on two real-world datasets demonstrate the effectiveness of ASeer in six metrics

    Towards Better Forecasting by Fusing Near and Distant Future Visions

    Full text link
    Multivariate time series forecasting is an important yet challenging problem in machine learning. Most existing approaches only forecast the series value of one future moment, ignoring the interactions between predictions of future moments with different temporal distance. Such a deficiency probably prevents the model from getting enough information about the future, thus limiting the forecasting accuracy. To address this problem, we propose Multi-Level Construal Neural Network (MLCNN), a novel multi-task deep learning framework. Inspired by the Construal Level Theory of psychology, this model aims to improve the predictive performance by fusing forecasting information (i.e., future visions) of different future time. We first use the Convolution Neural Network to extract multi-level abstract representations of the raw data for near and distant future predictions. We then model the interplay between multiple predictive tasks and fuse their future visions through a modified Encoder-Decoder architecture. Finally, we combine traditional Autoregression model with the neural network to solve the scale insensitive problem. Experiments on three real-world datasets show that our method achieves statistically significant improvements compared to the most state-of-the-art baseline methods, with average 4.59% reduction on RMSE metric and average 6.87% reduction on MAE metric.Comment: Accepted by AAAI 202

    Deep learning for robust forecasting of hot metal silicon content in a blast furnace

    Get PDF
    The hot metal silicon content is a key indicator of the thermal state in the blast furnace and it needs to be kept within a pre-defined range in order to ensure efficient operations. Effective monitoring of silicon content is challenging due to the harsh environment in the furnace and irregularly sampled measurements. Data-driven approaches have been proposed in the literature to predict silicon content using process data and overcome the sparsity of silicon content measurements. However, these approaches rely on the selection of hand-crafted features and ad hoc interpolation methods to deal with irregular sampling of the process variables, adding complexity to model training and optimisation, and requiring significant effort when tuning the model over time to keep it to the required level of accuracy. This paper proposes an improved framework for the prediction of silicon content using a novel deep learning approach based on Phased LSTM. The model has been trained using 3 years of data and validated over a 1-year period using a robust walk-forward validation method, therefore providing confidence in the model performance over time. The Phased LSTM model outperforms competing approaches due to its in-built ability to learn from event-based sequences and scalability for real-world deployments. This is the first time that Phased LSTM has been applied to real-world datasets and results suggest that the ability to learn from event-based data can be beneficial for the process industry where event-driven signals from multiple sensors are common
    • …
    corecore