2,434 research outputs found

    Ongoing Emergence: A Core Concept in Epigenetic Robotics

    Get PDF
    We propose ongoing emergence as a core concept in epigenetic robotics. Ongoing emergence refers to the continuous development and integration of new skills and is exhibited when six criteria are satisfied: (1) continuous skill acquisition, (2) incorporation of new skills with existing skills, (3) autonomous development of values and goals, (4) bootstrapping of initial skills, (5) stability of skills, and (6) reproducibility. In this paper we: (a) provide a conceptual synthesis of ongoing emergence based on previous theorizing, (b) review current research in epigenetic robotics in light of ongoing emergence, (c) provide prototypical examples of ongoing emergence from infant development, and (d) outline computational issues relevant to creating robots exhibiting ongoing emergence

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Human Management of the Hierarchical System for the Control of Multiple Mobile Robots

    Get PDF
    In order to take advantage of autonomous robotic systems, and yet ensure successful completion of all feasible tasks, we propose a mediation hierarchy in which an operator can interact at all system levels. Robotic systems are not robust in handling un-modeled events. Reactive behaviors may be able to guide the robot back into a modeled state and to continue. Reasoning systems may simply fail. Once a system has failed it is difficult to re-start the task from the failed state. Rather, the rule base is revised, programs altered, and the task re-tried from the beginning

    A neural network-based exploratory learning and motor planning system for co-robots

    Get PDF
    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object

    More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch

    Full text link
    For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on visual input, and thus cannot easily benefit from feedback after initiating contact. In this paper, we investigate how a robot can learn to use tactile information to iteratively and efficiently adjust its grasp. To this end, we propose an end-to-end action-conditional model that learns regrasping policies from raw visuo-tactile data. This model -- a deep, multimodal convolutional network -- predicts the outcome of a candidate grasp adjustment, and then executes a grasp by iteratively selecting the most promising actions. Our approach requires neither calibration of the tactile sensors, nor any analytical modeling of contact forces, thus reducing the engineering effort required to obtain efficient grasping policies. We train our model with data from about 6,450 grasping trials on a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger. Across extensive experiments, our approach outperforms a variety of baselines at (i) estimating grasp adjustment outcomes, (ii) selecting efficient grasp adjustments for quick grasping, and (iii) reducing the amount of force applied at the fingers, while maintaining competitive performance. Finally, we study the choices made by our model and show that it has successfully acquired useful and interpretable grasping behaviors.Comment: 8 pages. Published on IEEE Robotics and Automation Letters (RAL). Website: https://sites.google.com/view/more-than-a-feelin

    Development of Design and Control Manipulator Arm on Hexapod Robot with Smart Vision Sensor

    Get PDF
    In 2021, the Indonesian Search and Rescue Robot Competition underwent significant changes, transitioning from its original name of "Firefighting Robot Contest" to "Search and Rescue Robot Contest." With existing regulations and new races, this robot used in the Indonesian Search and Rescue Robot Contest is an essential addition manipulator robot arm to finish mission victim rescue. With existing study about Design Development and Control Manipulator Arm on this Hexapod Robot with Smart Vision Sensor expected can help the development of the AL-JAZARI team's hexapod robot in mission victim rescue. Research, This does development design and control from a manipulator robot arm that can save victims in the rules of the Indonesian Search and Rescue Robot Contest. This uses input from the Pixy Camera, and its output is from the movement of the manipulator arm of the MG90S servo, which can save the orange victim. A Pixy Camera detects the victim and is picked up by a robotic arm. The manipulator's arm uses the MG90S servo as the actuator. In contrast, the buffer from the servo uses a 3D print designed to adapt to robotic bodies and efficiently, at times, save victims. Result study This robot can run on the victim rescue track by pushing the start button, then the robot will move autonomously with level success casualty rescue by 85% at good lighting and level lighting success dim by 80%

    Integrating Vision and Physical Interaction for Discovery, Segmentation and Grasping of Unknown Objects

    Get PDF
    In dieser Arbeit werden Verfahren der Bildverarbeitung und die Fähigkeit humanoider Roboter, mit ihrer Umgebung physisch zu interagieren, in engem Zusammenspiel eingesetzt, um unbekannte Objekte zu identifizieren, sie vom Hintergrund und anderen Objekten zu trennen, und letztendlich zu greifen. Im Verlauf dieser interaktiven Exploration werden außerdem Eigenschaften des Objektes wie etwa sein Aussehen und seine Form ermittelt

    Learning and Acting in Peripersonal Space: Moving, Reaching, and Grasping

    Get PDF
    The young infant explores its body, its sensorimotor system, and the immediately accessible parts of its environment, over the course of a few months creating a model of peripersonal space useful for reaching and grasping objects around it. Drawing on constraints from the empirical literature on infant behavior, we present a preliminary computational model of this learning process, implemented and evaluated on a physical robot. The learning agent explores the relationship between the configuration space of the arm, sensing joint angles through proprioception, and its visual perceptions of the hand and grippers. The resulting knowledge is represented as the peripersonal space (PPS) graph, where nodes represent states of the arm, edges represent safe movements, and paths represent safe trajectories from one pose to another. In our model, the learning process is driven by intrinsic motivation. When repeatedly performing an action, the agent learns the typical result, but also detects unusual outcomes, and is motivated to learn how to make those unusual results reliable. Arm motions typically leave the static background unchanged, but occasionally bump an object, changing its static position. The reach action is learned as a reliable way to bump and move an object in the environment. Similarly, once a reliable reach action is learned, it typically makes a quasi-static change in the environment, moving an object from one static position to another. The unusual outcome is that the object is accidentally grasped (thanks to the innate Palmar reflex), and thereafter moves dynamically with the hand. Learning to make grasps reliable is more complex than for reaches, but we demonstrate significant progress. Our current results are steps toward autonomous sensorimotor learning of motion, reaching, and grasping in peripersonal space, based on unguided exploration and intrinsic motivation.Comment: 35 pages, 13 figure
    • …
    corecore