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Deutsche Zusammenfassung

Überblick

In dieser Arbeit werden Verfahren der Bildverarbeitung und die Fähigkeit
humanoider Roboter, mit ihrer Umgebung physisch zu interagieren, in engem
Zusammenspiel eingesetzt, um unbekannte Objekte zu identifizieren, sie vom
Hintergrund und anderen Objekten zu trennen, und letztendlich zu greifen.
Im Verlauf dieser interaktiven Exploration werden außerdem Eigenschaften
des Objektes wie etwa sein Aussehen und seine Form ermittelt.

Der Umgang mit Objekten, über die a priori keinerlei Information verfüg-
bar ist, stellt eine besondere Herausforderung für technische Systeme dar.
Ein unbekanntes Objekt zu segmentieren, d.h. als eigenständige physische
Einheit zu identifizieren und von seiner im ungünstigsten Fall ebenfalls unbe-
kannten und möglicherweise sehr komplexen Umgebung zu unterscheiden,
ist allein aufgrund visueller Daten wie Kamera- oder Tiefensensorbildern
im Allgemeinen nicht möglich. Durch die physische Interaktion mit unbe-
kannten Objekten kann ein Roboter wichtige Informationen bezüglich dieser
Objekte gewinnen. In dieser Arbeit wird gezeigt, wie dadurch die visuelle
Segmentierung von nichtverformbaren Objekten selbst in vollständig unbe-
kannten und extrem komplexen Szenen möglich wird.

Wenn durch die Segmentierung bekannt ist, welcher Teil der wahrgenom-
menen Umgebung ein eigenständiges Objekt ist, kann diese Information
genutzt werden, um visuelle und Formdeskriptoren des Objektes zu späte-
ren Wiedererkennung zu lernen. Darüber hinaus kann nun, da die Existenz
eines bewegbaren Objektes und seine ungefähre Form bekannt sind, der Ro-
boter versuchen, es zu greifen. Da die meisten Greifplanungsalgorithmen ein
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vollständiges 3D-Modell benötigen, wird in dieser Arbeit ein Verfahren vor-
gestellt, wie aus dem wahrgenommenen Teil des Objektes ein vollständiges
Modell geschätzt werden kann. Hierbei ist jedoch zu beachten, dass aufgrund
des teilweise unsicheren Wissens über das Objekt Fehler während des Greif-
vorgangs auftreten können. Zur visuellen Detektion dieser Fehler sowie zu
Strategien zum reaktiven Greifen liefert diese Arbeit ebenfalls einen Beitrag.

Beiträge der Arbeit

Die Segmentierung von Objekten in Bildern, d.h. die Unterscheidung, wel-
che Teile eines Bildes zu einem Objekt gehören und welche nicht, ist eines
der klassischen Probleme der Bildverarbeitung. Es ist ein hilfreicher und teil-
weise unverzichtbarer Vorverarbeitungsschritt für Erkennung, Lokalisierung,
visuelles Lernen und Manipulation von Objekten. Rein bildbasierte Segmen-
tierungsverfahren können jedoch im Allgemeinen nicht sicher entscheiden,
welche Teile einer aus unbekannten Objekten bestehenden, nichttrivialen
Szene zum selben physischen Objekt gehören und welche nicht. In dieser
Arbeit wird die Fähigkeit humanoider Roboter, mit ihrer Umgebung physisch
zu interagieren, genutzt, um diese Beschränkung zu überwinden und Mehr-
deutigkeiten in komplexen Szenen gezielt aufzulösen. Zu diesem Zweck
werden zunächst anhand der Kamerabilder des Roboters Objekthypothesen
erstellt. Eine dieser Hypothesen wird ausgewählt und der Roboter versucht,
sie durch vorsichtiges Schieben zu bewegen. Wenn es sich bei dem angesto-
ßenen Gegenstand tatsächlich um ein bewegbares Objekt handelt, so bewirkt
diese Aktion des Roboters eine Veränderung der Szene. Durch diese Ver-
änderung werden zusätzliche Informationen wahrnehmbar, die sich für die
Verifikation und Korrektur der Segmentierung nutzen lassen. Dass sich Teile
gleichartig bewegen, ist ein starker Indikator dafür, dass sie zum selben Ob-
jekt gehören. Deutlich unterschiedliche Bewegungen hingegen sprechen für
die Zugehörigkeit zu verschiedenen Objekten. Eine konsistente Bewegung
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einer der ursprünglichen Objekthypothesen bestätigt, dass sie tatsächlich mit
einem realen Objekt korrespondiert.

Wenn sich eine Objekthypothese bewegt hat und demnach zu einem realen
Objekt gehört, kann sie als Grundlage einer Segmentierung dieses Objektes
verwendet werden. Die einzelnen Bildpunkte können dann darauf überprüft
werden, ob sie sich bei der Bewegung des Objekts konsistent mit der Ge-
samthypothese verhalten haben. Ist das der Fall, gelten sie als verifiziert,
anderenfalls werden sie aus der Segmentierung entfernt. Angrenzende Punk-
te dagegen, die sich zusammen mit der Hypothese bewegt haben, werden als
möglicherweise zum selben Objekt gehörend neu in die Hypothese aufge-
nommen.

Durch mehrfache Wiederholung des Schiebens eines Objektes und die
darauffolgende Bestätigung bzw. Aussonderung sowie Ergänzung der zur
Hypothese gehörenden Punkte kann eine korrigierte Segmentierung gewon-
nen werden, die zudem durch physische Interaktion als mit einem realen
Objekt korrespondierend verifiziert ist. Diese Segmentierung erlaubt bei-
spielsweise das Lernen visueller und formbasierter Objektdeskriptoren zur
zukünftigen Wiedererkennung und Lokalisierung. Während ähnliche Arbei-
ten aus diesem Bereich relativ starke Annahmen über das Objekt machen
(zumeist signifikante Texturierung) oder einen vergleichsweise einfachen
Aufbau der Szene annehmen (einige Objekte auf einem ansonsten leeren
Tisch), wird in dieser Arbeit nur vorausgesetzt, dass das Objekt durch Schie-
ben bewegt werden kann, sich näherungsweise als starrer Körper bewegt und
dabei das Aussehen seiner Oberfläche nicht ändert (also nicht beispielsweise
transparent oder stark spiegelnd ist).

Im Anschluss soll das neuentdeckte und segmentierte Objekt gegriffen
werden. Hierzu wird aus der Segmentierung ein vollständiges 3D-Modell ge-
schätzt, auf das dann ein Greifplanungsalgorithmus angewandt werden kann.
Aufgrund der unvollständigen und ungenauen Information über das neue
Objekt ist damit zu rechnen, dass der geplante Griff nicht perfekt ist. Fehler
beim Greifen äußern sich üblicherweise dadurch, dass ein Teil der Hand mit

V



dem Objekt kollidiert, bevor sie die vorgegebene Greifpose erreicht. Dadurch
wird das Objekt verschoben oder die Hand erreicht nicht die beabsichtigte
Pose, was zum Scheitern des Greifversuchs führen kann. Solche verfrühten
Kollisionen muss der Roboter bemerken und darauf reagieren.

Klassischerweise erfolgt die Detektion durch taktile oder Kraftsensoren,
die allerdings für leichte Objekte nicht sensitiv genug sind und im Fall von
taktilen Sensoren meist nur einen Teil der Hand bedecken. Daher wurde in
dieser Arbeit ein neues Verfahren zur Kollisionsdetektion entwickelt. Es de-
tektiert die Bewegung des Objektes visuell und ergänzt so die kraftbasierten
Sensoren. Hierbei wird der optische Fluss, d.h. die Bewegung der Bildpunkte
von einem Kamerabild zum nächsten, während des Greifvorgangs beobachtet
und zu Clustern mit ähnlicher Bewegung gruppiert. Dadurch kann festgestellt
werden, ob in der Bildregion nahe der Hand in deren Bewegungsrichtung
ein Cluster existiert, das sich anders bewegt als der Rest der Szene. Das lässt
darauf schließen, dass die Hand eine Bewegung des Objektes verursacht hat.
Die Hand und insbesondere die Fingerspitzen werden visuell verfolgt, und
indem bestimmt wird, welcher Finger dem Objekt am nächsten und damit
vermutlich für die Kollision verantwortlich ist, kann eine gezielte Korrektur
der Handpose durchgeführt werden. Auf diese Weise wird die Griffkonfigu-
ration während der Ausführung so lange reaktiv angepasst, bis die Hand das
Objekt kollisionsfrei erreicht hat.

Zusammenfassung

In dieser Arbeit wird also die visuelle Objektentdeckung und -segmentierung
durch gezielte physische Interaktion des Roboters mit seiner Umgebung
unterstützt und verifiziert. Die Segmentierung erlaubt, Aussehen und Form
des Objektes, soweit es sichtbar ist, zu lernen. Mithilfe des unvollständigen
Wissens über seine Form wird ein Griff geplant und ausgeführt, wobei wäh-
rend der Annäherung der Hand an das Objekt Kollisionen visuell detektiert
und reaktive Korrekturen ausgeführt werden, bis der Griff erfolgreich ist.
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Durch das enge Zusammenspiel von visueller Wahrnehmung und Interak-
tion mit der Umwelt können so Probleme, die für sich genommen äußerst
schwierig sind, durch den Roboter robust gelöst werden.
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Abstract

This thesis integrates computer vision and the ability of humanoid robots to
physically interact with their environment, in order to discover new, unknown
objects, segment them from the background, and grasp them. During this
interactive exploration, object properties like its visual appearance and its
shape are learned.

Dealing with objects about which no prior knowledge is available is a
very challenging task for artificial systems. Segmenting an unknown object,
i.e. identifying it as an individual physical entity and separating it from its
unknown and possibly very complex environment may, in general, be impos-
sible based only on visual input from cameras or depth sensors. By means
of physical interaction with unknown objects, a robot can obtain additional
helpful information. This thesis shows how that allows the visual segmen-
tation of rigid objects even in completely unknown and extremely complex
scenes.

The result of the segmentation is the information which part of a perceived
scene constitutes an object. This can be used to learn visual or shape descrip-
tors of the object. Aditionally, as the robot now knows about the existence,
location and shape of a movable object, it can attempt to grasp it. Most grasp
planning algorithms require a complete model of the 3D shape of the object.
Therefore, this thesis proposes a method for estimating a complete model
based on the perceived parts of the object. However, as the knowledge about
the object is partly uncertain, grasping may fail during execution. In this the-
sis, a method for visual detection of such errors and appropriate corrective
reactions is presented.
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1 Introduction

1.1 Motivation

Over the last decade, robots have gained momentum expanding into more
and more areas of application. After having been restricted to controlled
factory environments for a long time, there is now an increasing range of
tasks that robots fulfill in open, real world situations, from simple vacuum
cleaning robots to autonomous cars. At the same time, there is continuous
progress in the improvement of the skills needed by humanoid and service
robots that are supposed to interact and work together with humans in their
everyday environment, or support them in disaster scenarios like the one
considered in the newest DARPA robotics challenge.

One key to enabling robots to act in an open, uncontrolled environment
is their ability to handle new, unexpected situations that they were not ex-
plicitly prepared for. An important special case is when the robot encounters
new, unknown objects. Without any prior knowledge about them, only the
perceived information can be used when the robot has to interact with them.
In such a situation, the robot should be able to autonomously explore the
objects and familiarize itself with them, which means that it should learn e.g.
to recognize them and how they can be manipulated.

This thesis contributes to the ability of humanoid robots to autonomously
interact with new, unknown objects, learn about them, and grasp them. The
visual perception of the robot plays a key role in those tasks, and is used in
close interplay with the physical actions. This close integration of perception
and explorative physical interaction is essential for identifying individual
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1 Introduction

objects in uncontrolled, complex scenes, as well as for manipulating them
with only uncertain and incomplete knowledge.

1.2 Overview

The goal of this thesis is to enable humanoid robots to autonomously discover
and segment unknown objects in realistic, complex scenes, learn about them,
and grasp them. Figure 1.1 gives a schematic overview of the approach that
was developed within this thesis in order to achieve these goals.

The first crucial step when attempting to learn about a new object is to seg-
ment it from its environment, i.e. to determine which parts of the perceived
scene belong to one specific object and which belong to something else. This
is an extremely difficult task when the scene is complex and the robot has
little or no knowledge about the objects in it. The reason why it is so diffi-
cult to realize this - very fundamental - competence in an artificial system is
that the definition of what is an object is hard to formalize, and depends on
semantics and context. Segmentation approaches which are based only on
passive visual perception are unavoidably restricted to visual criteria, which
are not always sufficient to correctly understand the physical structure of an
observed scene.

This thesis proposes a novel approach in which the robot interacts phys-
ically with the objects in order to support their visual segmentation. This
introduces additional information by making physical properties of the ex-
plored scene apparent to the visual perception. Initially, object hypotheses
are generated based on the visual input. By careful pushing, one or more
objects are caused to move. This motion is used to verify or discard the
initial hypotheses, and thus confirm the existence of actual physical objects
corresponding to some of these hypotheses. The motion is then used as an
additional visual cue for object segmentation, as it allows to correct and im-
prove the confirmed object hypotheses. The developed approach is presented
in chapter 3.
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1.2 Overview

Figure 1.1: Overview of the process for discovery, segmentation and grasping of unknown
objects developed in this thesis.
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1 Introduction

When an object has been segmented, the robot knows which part of the
perceived scene belongs to it, which allows to learn a visual descriptor for
recognition. The segmentation also allows to estimate the shape of the object,
which can be used to determine possible grasps. As most grasp planners
require a complete shape model, it is necessary to estimate the entire shape of
the object based the perceived part. To this end, a symmetry-based approach
has been developed, which is detailed in chapter 4. Grasp planning on the
resulting object model can then be performed with any state-of-the-art grasp
planner.

It may happen though that the resulting planned grasp is not entirely suit-
able for the actual object, as the shape model was created based on real
sensor data which may be noisy and incomplete. Additionally, imprecisions
in perception and motion may lead to failure during the grasp execution. In
such a case, it is necessary that the robot detects the failure, which is usually
a premature collision of the grasping hand with the object. Such a collision
can often be detected by tactile or force sensors, but in practice those are not
always available on all parts of the robot. Furthermore, they may not have a
sufficient sensitivity to detect collisions with e.g. very light objects that are
easily pushed away without resisting.

To complement these sensors, a visual approach for collision detection is
presented in chapter 5. By observing the hand of the robot and the optical flow
in the camera images, this method detects when the robot causes the object
to move. When that happens, a corrective movement is performed, and after
one or more corrections the grasp can usually be concluded successfully.
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2 State of the art

This chapter gives an overview of the fields that are related to this thesis.
The first section provides an introduction to visual object segmentation and
gives some chosen examples of recent publications on this topic. The second
section covers the state of the art in interactive object segmentation, which is
the core topic of this thesis. The third section describes different approaches
to completing the three-dimensional shape of objects where only partial
shape information is available. The fourth section gives an overview of the
field of reactive grasping and reactive grasp correction.

2.1 Visual object segmentation

2.1.1 Problem statement

Visual object segmentation is the task of separating one or more objects from
the other objects and/or the background in a given scene. The scene might
be observed or given in the form of an image, a depth map, or a point cloud
where each point has a 3D position and an RGB value. Traditionally, the
problem has been considered almost exclusively for the case of camera im-
ages. In the last years, the increasing availability and popularity of combined
RGB and depth cameras has caused a shift towards the usage of point clouds,
which can be obtained by these sensors or by dense stereo matching when
using stereo camera images. Given an image or a point cloud capturing a
scene, the aim of object segmentation is to decide which of the pixels or
points belong to the same real-world object.
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2 State of the art

2.1.2 Common approaches

While humans acquire the skill of visual object segmentation at a very early
age ([Fitzpatrick et al., 2008]) and usually have no difficulties discerning ob-
jects from the background even in highly complex and cluttered scenes, recre-
ating this ability in artificial systems has turned out to be extremely difficult.
This is due to the very broad and often semantics- and context-dependent
meaning of the word "object" ([Feldman, 2003]). Most approaches based on
passive observation try to apply one or more geometric or perceptual prin-
ciples as criteria to decide which elements of the perceived scene belong to
the same real object.

These principles include e.g. connectedness ([Palmer and Rock, 1994],
[Mishra et al., 2012]), bilateral symmetry ([Li and Kleeman, 2011]), co-
planarity and co-linearity of contours ([Kraft et al., 2008]), convexity ([Stein
et al., 2014]), visual similarity ([Alpert et al., 2012], [Kootstra et al., 2010]),
smooth curvature ([Richtsfeld et al., 2012]) etc. Often, these approaches
are realized in the form of a bottom-up region growing where neighboring
regions are fused as long as they fulfill the respective criterion, or they for-
mulate the segmentation as a graph-cut problem where the pixels/points or
regions are nodes which, if they are adjacent, are connected by edges that
are weighted with some kind of similarity measure. Both concepts implicitly
presume that the objects fulfill the connectedness property.

The following two subsections explain in more detail an approach based
on bottom-up region growing ([Alpert et al., 2012]) and on graph cut
([Mishra et al., 2012]), respectively. After that, a recent publication based
on local convexity that makes explicit use of 3D information ([Stein et al.,
2014]) is described as an example for the most recent research trends.
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2.1 Visual object segmentation

2.1.3 Image Segmentation by Probabilistic
Bottom-Up Aggregation and Cue Integration

In [Alpert et al., 2012], image pixels and later regions are gradually merged
together in a sequence of steps to create larger coherent regions. The question
whether two regions should be merged is answered based on different similar-
ity cues which are weighted following a mixture of experts formalism. This
is a probabilistic framework that dynamically assigns weights to different
cues depending on how meaningful they are given the current observation.

The image is considered to be divided into a set of regions

R = {R1,R2, ...,Rn}

together with a set of observations ~Hi ∈ Rd for each region Ri. Following the
mixture of experts formalism, the decision whether or not two regions Ri and
R j should be merged together is indicated by a binary variable si j which takes
on the value s+i j if the regions should be merged and s−i j otherwise. Based on
the observations Hi and H j, i.e. the visual cues calculated in the two regions,
the probability P(s+i j |~Hi, ~H j) is calculated as

P(s+i j |~Hi, ~H j) = ∑
k

P(s+i j ,ck|~Hi, ~H j)

= ∑
k

P(s+i j |~Hi, ~H j,ck)P(ck|~Hi, ~H j)

Thus, the probability that Ri and R j should be merged is the sum over the
merge probabilities P(s+i j |~Hi, ~H j,ck) for the individual cues ck weighted with
a term P(ck|~Hi, ~H j) which encodes the local and dynamic influence of the
cues. The cues ck can be color, intensity, texture, boundary continuity etc. In
this publication, only intensity and texture are used.

Figure 2.1 demonstrates how different cues can have different discrimi-
native power which is incorporated by the dynamic influence P(ck|~Hi, ~H j).
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Figure 2.1: An example of a scene where different similarity cues should be used when com-
paring different region pairs (from [Alpert et al., 2012]).

.

While the blue patches highlighted in the left picture can be clearly dis-
tinguished by their intensity, the green patches in the right image differ in
texture. Hence, the intensity cue should have a higher weight when deciding
whether or not to merge the two regions marked on the left, and the texture
should have a higher weight in the case of the regions highlighted on the
right side.

As the authors only use intensity and texture, the weighting of these two
cues can be determined by quantifying the texturedness of the patches that are
considered. For each region a 256-bin histogram of local gradient magnitudes
Gi is computed. The histograms of textured regions will be rather dense,
while untextured regions yield sparse histograms.

The sparseness Si of the histogram Gi is quantified by the quotient of its
l1 and l2 norm. For the individual regions, the values

P(c1|~Hi) =
1

(1− e−(aSi+b))

are calculated, and for the two examined regions i, j the weight p(c1|~Hi, ~H j)

of the intensity cue is the minimum of (P(c1|~Hi) and P(c1|~H j)).
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2.1 Visual object segmentation

To compute the merge probability contributed by each cue ck, Bayes’ for-
mula can be applied to the posteriors such that

P(s+i j |~Hi, ~H j,ck) =
L+

i jP(s
+
i j |ck)

L+
i jP(s

+
i j |ck)+L−i jP(s

−
i j |ck)

.

L±i j , p(~Hi, ~H j|s±i j ,ck) denote the likelihood densities given s±i j respectively
which are estimated from the local conditions of the surrounding regions,
and P(si j|ck) is a prior (see further below).

For the intensity cue, its corresponding likelihood can be modeled as

L±i j = p(∆i j|s±i j) = N(0,σ±i j ),

i.e. it is given by a zero-mean Gaussian over the average intensity difference
∆i j = Īi− Ī j of the regions Ri and R j. σ

±
i j is defined as σ

±
i j = σ

±
local +σscale.

Here, the local term σ
±
local is estimated using the intensity differences of

adjacent regions. σscale accounts for the effects of noise that is relatively big
for small regions but small for larger ones.

When considering the texture cue, a bank of edge filters is applied to the
regions Ri and their absolute responses are stored in a histogram hi ∈~Hi.
The difference between two histograms hi and h j is measured using the χ2

distance

Di j = ∑
k

(
hi(k)−h j(k)
hi(k)+h j(k)

)2

,

and the likelihood Li j corresponds to the probability of this difference given
a certain random noise.

The prior P(si j|ck) is determined by means of the geometrical properties
of the regions and is relative to the length of their common boundary, i.e. it is
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independent of the cue ck. With τi j being the length of the common boundary
of two regions Ri and R j, the prior is estimated by

P(s±i j) =
τi j

min(∑k τik,∑k τ jk)
.

This probabilistic framework can be used within any merge algorithm for
segmentation. The authors chose the Segmentation by Weighted Aggregation

algorithm ([Galun et al., 2003]), which creates a hierarchy of increasingly
coarser graphs starting with single pixels as nodes.

2.1.4 Active Visual Segmentation

In [Mishra et al., 2012], the segmentation problem is simplified to a distinc-
tion between a single object and the background. It requires an initial starting
point on the object to be segmented which they call a fixation point. With
these restrictions, the segmentation task can be transformed into a well-posed
binary labeling problem. The central idea is to transform the image into a
polar space representation with the fixation point as its origin, and apply a
graph cut algorithm to find an optimal boundary contour.

The main means to find optimal object boundaries are the edges detected in
the image. Here it is crucial that the found edges should correspond to actual
object contours and not to internal edges. Thus, applying e.g. the traditional
Canny edge detector to the intensity or color channels is insufficient, as it
returns the inner boundaries caused by texture as well as the object contours.
A gradient-based edge filter would suffer the same problem. Thus, the authors
use the Berkeley edge detector ([Martin et al., 2004]) which was trained with
labeled samples of inner and outer object boundaries in color images and
almost never returns edges in textured image areas. Besides this, the authors
report that the additional use of disparity discontinuities or motion helps
significantly in obtaining actual object boundaries when combined with that
edge detector.
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2.1 Visual object segmentation

Figure 2.2: The different stages of the segmentation process: Original image, edge image,
edges in polar space, result of the graph cut, and final segmentation (from [Mishra
et al., 2012]).

The algorithm also requires a seed or fixation point on the object that is
to be segmented. This point can be provided manually or by automatically
selecting a salient point, i.e. a point in a part of the image that stands out
visually, which can be calculated using e.g. the method from [Achanta et al.,
2009]. The edge image is then transformed to polar coordinates with the
fixation point as center. In the resulting polar edge image, each row represents
a ray emerging from the fixation point at a certain angle, and the n-th column
contains the pixels at a distance of n−1 pixels from the fixation point in the
different directions. All pixels in the first column correspond to the fixation
point and thus are in the segmentation, while all points in the last column are
defined to be outside.

A graph is constructed from the polar image, in which each pixel is a
node that is connected with its direct neighbors. The edges of the graph
are weighted with the average value of the two pixels it connects. While
enforcing that all nodes in the first column are inside the segmentation and
all nodes in the last one are outside, the graph cut algorithm from [Brox
et al., 2004] is used to find an optimal cut which results in a boundary that
separates the polar edge image from top to bottom. Figure 2.2 visualizes
this process: An edge image is computed from the input image, transformed
to polar space around a seed point (green dot in the second image), and a
graph cut is calculated. The determined boundary is transformed back into
the original image and defines a closed contour around the fixation point,
which is the final segmentation result.
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2.1.5 Object Partitioning using Local Convexity

With the spread of cheap and solid sensors that provide images together
with depth values, the use of 3D information has turned out to be helpful in
tackling the problem of object segmentation. Depth discontinuities usually
indicate object boundaries, and the work of [Stein et al., 2014] is based on
the observation that object surfaces can most of the time be described as a
set of convexly connected smooth patches.

Figure 2.3: The decision whether two adjacent surface patches are convexly connected can be
made by considering the angles between their normals and the line connecting their
centers (from [Stein et al., 2014]).

The first step of the proposed algorithm is to oversegment the scene, which
is given in the form of a set of 3D points, into a set of small surface patches
which the authors call supervoxels, in analogy to superpixels. The patches
are generated starting from a regularly sampled grid of seeds, which are
extended using region growing that takes into account the distance to the
seed, the local surface normals, and color. The most important property of
the supervoxels is that they are designed to adhere to object boundaries. The
resulting supervoxels form an adjacency graph in which they are connected
to their immediate neighbors.

Each connection between adjacent supervoxels is analyzed on being con-
vex or not. Given two supervoxels with centers x1,x2 and normals n1,n2, the
vector d = x1−x2

‖x1−x2‖
indicates the direction from one center to the other. The

connection between the supervoxels is convex if ∠(d,n1) < ∠(d,n2) (see
Figure 2.4). This is the case if cos(∠(d,n1))> cos(∠(d,n2))⇔ n1 ·d > n2 ·d.
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2.1 Visual object segmentation

To account for noise, a connection is also considered convex when the angle
between the two normals is below a certain threshold.

Figure 2.4: Overview of the algorithm for segmenting the scene into convexly connected
regions (from [Stein et al., 2014]).

To increase reliability, the algorithm demands an extended convexity be-
tween adjacent supervoxels which requires them to be convexly connected
and additionally have a common neighbor that is also convexly connected to
both. Using region growing, all sets of supervoxels that are connected by this
extended convexity are clustered together, i.e. the whole scene is segmented
into convexly connected regions.
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2.1.6 Discussion

This section has given an introduction to the problem of visual object seg-
mentation. Three different attempts on solving it have been presented in
some detail to give an impression of the different directions from which it
has been approached.

The work of [Alpert et al., 2012] tackles the segmentation problem in its
most general form, resulting in an algorithm that splits an image into a set of
segments. Depending on the similarity cues that are used here, their param-
eters and the weights when combining them, very different segmentations
can result from the same input. An important feature of this approach is that
different cues can be integrated in a manner that allows different weighting
depending on the image regions that are considered to be fused. This allows
for great extensibility and potentially high robustness when using a multilat-
eral set of cues. It is, however, very unclear how a weighting function can be
designed that generates good weights for many different cues.

In [Mishra et al., 2012] the problem has been simplified by assuming
that only one object is considered and a point on it is already known. The
effectiveness of the algorithm depends entirely on the quality of the used
edge detection. With a solid edge filter and when depth edges are available
too, the authors report very good results. The fact that an initial point of
interest can be set allows for a more goal-oriented segmentation without
trying to segment the whole scene, and context knowledge can be integrated
in this way.

Exploiting 3D information is the main idea of [Stein et al., 2014]. The
assumption that objects are always completely connected by convex surfaces
is of course not true in general; the authors state however that the segmenta-
tion into such parts still makes sense from the point of view that objects can
again be divided into functional or semantic parts by their method. Indeed
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the resulting segments usually correspond to simple objects or intuitively rea-
sonable parts of more complex ones and are therefore certainly interesting
and useful.

As already mentioned, all these approaches suffer from the fact that they
can easily be fooled: None of them would separate two relatively similarly
looking objects that are placed next to each other. To overcome this funda-
mental weakness, physical interaction is necessary, which will be surveyed
in the next section.

2.2 Object segmentation by physical
interaction

Robots are not restricted to passive observation of a scene, but can act in a
purposeful way to improve their understanding of it. This can be done e.g. by
moving the camera in a helpful manner ([Connolly, 1985], [Aloimonos et al.,
1988], [Bajcsy, 1988]), or by interacting physically with the environment. In
the case of object segmentation, this is extremely helpful to overcome the
limitations and ambiguities of visual perception. When objects move, this
is an extremely helpful cue for their distinction from the background. By
intentionally causing motion in the scene, the robot can greatly support its
efforts on visual segmentation.

2.2.1 Early work

An early notable implementation of physical interaction to support visual
segmentation was realized by [Tsikos and Bajcsy, 1991]. They consider an
unordered heap of parcels and letters that the robot is supposed to separate.
The robot is equipped with a laser range scanner and different manipulators
that can push objects or "grasp" them using a suction device. Depending
on an estimation of the possible objects and their spatial relation, the robot
selects an action to either remove an object from the heap or to move one in
order to change an ambiguous arrangement.
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Figure 2.5: Approach of the robot arm towards the object, contact and retreat. Outlines of the
moving arm and object are generated by simple image differencing (from [Metta
and Fitzpatrick, 2003]).

Another conceptual study was done by [Metta and Fitzpatrick, 2003]. Here,
the focus was to demonstrate how experimental manipulation by a robot
can enable it to discover and segment individual objects. A static camera is
observing a table with an unknown object placed on it, which is pushed by
a robotic arm. In the camera images, the optical flow is calculated, which is
the 2D motion of each pixel from one image to the next. While the arm is
approaching the object, this allows to determine the regions covered by the
arm and learn its appearance. When it touches the object, it starts to move and
the nonzero optical flow suddenly spreads over a significant image region
next to the arm. This can be detected, and in the moment of first contact
the image region covered by the object is thus revealed. This allows for a
rough object segmentation in this relatively simple setup and shows the huge
potential benefit of using motion as a cue for this task.

A relatively similar approach was followed in [Kenney et al., 2009]. As in
[Metta and Fitzpatrick, 2003], a robot arm approaches and touches an object
while being observed by a static camera. The difference between consecutive
images is determined, which during the approach is essentially caused by
the moving arm. When the object is touched and starts moving, the amount
of changing pixels increases significantly which indicates that the collision
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occurred. The new region in which the pixels differ from the last image frame
is then used as an object segmentation.

Another relatively early attempt to exploit physical interaction for object
segmentation and learning is [Li and Kleeman, 2009] (extended in [Li and
Kleeman, 2011]). The robot finds symmetric object candidates in stereo cam-
era images and applies a careful push to the object over a small distance. The
symmetric outlines of the object are tracked during motion. The difference
of the images before and after push contains the two overlapping regions
covered by the object before and after pushing. Using the symmetry axis of
the object, the overlap can be removed to obtain a segmentation (see Figure
2.6). SIFT features ([Lowe, 1999]) are used to learn visual object descriptors
for recognition.

Figure 2.6: Top: The object before and after pushing, and the segmentation using the image
difference. The two green lines mark the symmetry lines of the object. Bottom:
Removal of the overlap, leading to a correct segmentation (from [Li and Kleeman,
2011]).

Since about 2011, the idea of physical interaction for object segmentation
has gained increased popularity, and a number of different approaches has
been proposed. In the following subsections, they are grouped by the per-
spective they take on the problem. One possible approach direction is to try
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to separate objects that lie on an unordered heap. Once the objects are singu-
lated, the segmentation problem is essentially solved. Another way to look
at the segmentation task is to assign probabilities to image pixels or regions
that quantify the uncertainty about which object they belong to. Here the
motion caused by the interaction is a cue that helps reduce this uncertainty.
Lastly, one can try to track or relocalize the object during or after motion.
This requires an initial idea what the possible objects in the scene are, and
their models have to be updated and improved continuously to make their re-
localization possible. From this perspective, the object learning is an integral
part of the segmentation process.

2.2.2 Separation-oriented approaches

This kind of approaches tries to let a robot separate objects that form a clutter,
i.e. are standing next to each other or form a heap or pile. The desired result
is that each single object lies separated from the others, which implicates
that it is segmented, and also facilitates grasping. These works assume that
the scene contains a mostly empty table with one or more clusters of objects
on it. This means that the background is known and simple, and that only a
finite set of foreground objects needs to be considered.

Interactive singulation of objects from a pile

In [Chang et al., 2012], a robot equipped with an RGBD sensor has the task
to singulate the objects lying in a cluttered arrangement on a table. To this
end, the scene is presegmented by first finding the dominant plane which is
assumed to be the table and removing it from the perceived point cloud, and
then cluster the remaining points. This results in having one or more sets of
points which the authors call "spatial units" that each correspond either to a
single object or to a cluster of objects touching each other.

The robot now has to decide whether the spatial units consist of one or
more objects, which is achieved by physical interaction. The smallest one is
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selected and pushed into a direction which is free of objects to avoid merging
it with others. The camera is static, thus a simple point cloud subtraction can
be used to find which spatial units moved. If in the resulting scene there is
more than one unit that moved, this indicates that a separation has occurred.
If only one unit moved, it could be either a single object or several objects
that were not separated.

Figure 2.7: A cluster of objects before and after pushing. Second column: Remaining regions
after subtraction of the table. Right: The feature correspondences that are used to
estimate the rigid body transformation for evaluating whether one or more objects
were moved (from [Chang et al., 2012]).

In this case, the system has to examine whether the pushed spatial unit con-
sists of one or more objects. Its transformation due to the push is estimated
using visual features at Harris corner points. Using RANSAC ([Fischler and
Bolles, 1981]), up to five candidate transformations are determined. If there
are insufficient visual features for this approach (e.g. on single-colored ob-
jects), the mean and the principal axes of the point cloud are used to estimate
the transformation, and more candidates are created by small random pertur-
bations.

Each candidate transformation is evaluated by measuring the ratio of
matches in the dense point cloud. The quality of the dense point matches
indicates whether it was one single rigid object that underwent the transfor-
mation, or if it were two or more objects that moved somewhat differently.
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By pushing the same spatial unit several times and accumulation the match-
ing scores, the evidence becomes increasingly reliable. When the certainty
of the spatial unit being a single object is high enough, the robot picks it up
and removes it from the table. Then the same procedure is repeated again for
the smallest object cluster until the table is cleaned.

Using Manipulation Primitives for Brick Sorting in Clutter

In the work of [Gupta and Sukhatme, 2012] (continued in [Gupta et al.,
2015]), the goal is to sort a set of Duplo bricks by color, where initially the
bricks may be lying on a chaotic heap. In order to be able to pick them up
one by one and sort them, they first need to be separated. As in [Chang et al.,
2012], they work on point clouds from an RGBD camera, and initially find
and subtract the table plane from the scene point cloud. The remaining points
are clustered into connected regions.

The authors exploit the fact that the used Duplo bricks have different colors
to decide whether the connected regions consist of one or more bricks. Based
on this and on the height of the region they classify it as being uncluttered,
cluttered or piled. The latter means that bricks are lying on top of each
other. Depending on that classification, they apply different manipulation
primitives on that region: If it is piled, the robot places its finger next to the
topmost point and pushes it horizontally to make the pile tumble.

Figure 2.8: Visualization of the two manipulation primitives for spreading out cluttered objects
(from [Gupta and Sukhatme, 2012]).
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If the region is cluttered but all bricks are lying on the table and not on
top of another one, the robot tries to separate one or more bricks from the
rest. This is done by moving the finger down into the center of the region
and then pushing horizontally first along one axis and then along the other
one. In this way, the authors hope that several objects that may have been
pushed together in the first movements will be separated when pushing in the
perpendicular direction. Figure 2.8 visualizes the two proposed manipulation
primitives.

When singulated objects are found, the robot grasps them and puts them
into a glass depending on a sorting criterion like color or size. In this manner,
the robot removes single objects and separates cluttered regions until the
whole table is cleared.

Clearing a Pile of Unknown Objects using Interactive
Perception

Another approach to clearing away a pile of objects was proposed by [Katz
et al., 2013]. They first form object hypotheses based on visual input from
an RGBD sensor, push one of them, and if it can be re-localized afterwards,
they consider it verified and grasp it in order to remove it from the table.

The first step is to segment the perceived scene into object candidates.
This is done by finding facets, which the authors define as areas that are
not disconnected by depth discontinuities or significant changes in normal
orientation. To this end, they apply a filter on the depth image to find disconti-
nuities, and estimate local normals for every image point. By overlaying two
images that represent the depth discontinuities by grayscale values and the
normal orientation by colors, they get an image that represents both criteria
and is then segmented using Mean-Shift ([Fukunaga and Hostetler, 1975],
[Silverman, 1986]). The resulting smooth, continues surfaces are used as
object hypotheses.
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Figure 2.9: Object facets are determined by finding regions that are not separated by depth
discontinuities and have relatively similar surface normals (from [Katz et al.,
2013]).

One of them is chosen randomly and pushed by the robot. In the resulting
scene, facets are again determined in the same manner. Now the facets of the
old scene are matched with those in the new scene based on their size, color
histogram and SIFT features. This may lead to ambiguous associations when
several relatively similar facets exist in the scene. Therefore, the authors con-
struct a graph containing the old and new facets as nodes that are connected
if their similarity score is above a threshold, and the edge is weighted with it.
Ambiguity in the form of multiple edges connected to one vertex is removed
by computing a weighted bipartite matching on the graph.

With the correspondences between old and new facets established, those
that moved and match well are considered verified. One of them is selected at
random and grasped by the robot, so the object can be removed from the heap.
Both the grasping and the pushing are realized using compliant controllers
so that unexpected collisions of robot and objects do not cause damage to
either.
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Guided Pushing for Object Singulation

In [Hermans et al., 2012], the authors try to singulate objects that initially
are standing next to each other on a table. Here, the focus is on devising a
deterministic process that systematically interacts with the clutter to make
sure that all objects are actually separated.

The authors work on the data obtained from an RGBD sensor. Again, the
first step is to determine the table plane in the scene point cloud and remove
it, so that only the cluster of objects on it remains. For a given cluster, the
visual and depth edges in it are considered candidates for object boundaries
that need to be checked by physical interaction.

Figure 2.10: Left: Histogram of candidate boundary edge orientations. Right: Accumulated
push history (from [Hermans et al., 2012]).

Instead of testing each edge, which would require a lot of effort especially
in the case of textured objects as well as a tracking of all edges over several
pushes, they quantize the edges into histogram bins by their orientation in
the table plane. A similar histogram is created for the directions from which
cluster has already been pushed. Using those histograms, a rough tracking
of the change in orientation due to the pushes is sufficient.

A push direction is selected using one of the candidate edges. The cluster is
hypothetically split into two parts along that edge, and the push goes through
the center of one of them in the direction of the edge. Afterwards, ICP is used
to determine the object transformation. When the resulting alignment has a
high mean error, this indicates that the cluster contains more than one object.
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Therefore, the push history is only updated when a good ICP match indicates
that the cluster moved consistently. When a cluster is separated, their push
history is reset. This process is continued until for every remaining cluster
there is sufficient certainty that it consists of only one object.

2.2.3 Probabilistic approaches

The approaches presented in this subsection formulate the segmentation
problem in a probabilistic manner. This allows to quantify the certainty
of the obtained segmentation and to reduce the uncertainty by integrating
information from several physical interactions.

Scene Understanding through Autonomous Interactive
Perception

In [Bergström et al., 2011], physical interaction is used to check visually
created segments on whether they contain one or two objects. To this end,
the segment is separated into two by clustering, and one of those two hypo-
thetical objects is pushed. In this way, the authors hope to cause different
motion of the two parts if they actually correspond to two different objects.

Feature points are extracted in the initial segment and relocalized after
pushing. The pairwise distance between points is calculated in the old and
new scene, with the intuition that a change in distance would indicate that
the two points lie on different physical objects. A matrix with the differences
in pairwise distance is created, where element (i, j) is the difference in the
distance between points i and j. If there are two objects that moved differ-
ently, two columns of that matrix will have zeros in the same places when
their points lie on the same object.

Consequently, the two dominant eigenvectors of that matrix correspond
to two subspaces containing the points lying on the two objects. By project-
ing all columns into the 2D space spanned by those eigenvectors, they can
be clustered easily. By comparing the inter- and intra-class variance of the
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resulting point sets in image space it can be decided whether they form actu-
ally separated regions in the image, which would indicate that they belong to
different objects, or whether they overlap and thus the differences in pairwise
distances were just due to noise. The ratio of inter- and intra-class variance
can be used to quantify the belief about the segment consisting of one or two
objects. By accumulating the information of several pushes, the uncertainty
of that belief can be reduced further.

Probabilistic models for robot-based object segmentation

[Beale et al., 2011] propose a probabilistic framework for object segmenta-
tion based on the motion caused by pushing with a robot arm. They work
on a single camera image which is first segmented by color, and the result-
ing small regions are tracked during the push using the method from [Paris,
2008].

During the execution of the pushing motion, the optical flow is calculated
from frame to frame. The motion of the arm is calculated using forward
kinematics and transformed into the image coordinate system. The motion
of each image segment is then compared to it, and in the time before the
first contact between arm and object the segments belonging to the arm can
be determined. After contact, the segments belonging to the object move
relatively similar to the arm.

Figure 2.11: Camera image with the robot arm highlighted in green, the initial segments, their
probability of belonging to the object that is being pushed, and the thresholded
segmentation result (from [Beale et al., 2011]).
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Based on the difference between the calculated hand motion and the ob-
served motion of a segment, the probability that it is being pushed is quan-
tified. By integration over several frames, the probability values for each
segment tend to become very disambiguous. Using a threshold, a final binary
segmentation mask can be obtained (see Figure 2.11).

Probabilistic Segmentation and Targeted Exploration of
Objects in Cluttered Environments

In the work of [van Hoof et al., 2012] (continued in [van Hoof et al., 2014]),
the segmentation problem is formulated by assigning probabilities to parts
of the scene that indicate which of them belong to the same object. Based on
those probabilities, the robot chooses actions that are expected to reduce the
uncertainty of the segmentation.

First, the authors create a set of parts from the observed scene by defining
part centers on a regular 3D grid and assigning everything within a radius of
6 cm to them. These parts may overlap, and they are tracked during the in-
teractions based on the SIFT features that exist within their radius. Their 3D
motion caused by a push of the robot is determined based on those features
using RANSAC. The determined transformation is used to estimate whether
parts moved similarly or not.

The approach establishes a probability distribution over the possible par-
titionings of those parts into groups that correspond to actual objects. The
motion is used as a cue to gain information that allows to improve that distri-
bution towards the true segmentation. As it is computationally intractable to
calculate the probabilities for each possible segmentation, a sampling method
is used to approximate the distribution.

By sampling estimations of possible new distributions resulting from the
motion of the parts, the one is chosen for pushing that is expected to mini-
mize the entropy of the distribution. This allows to select interactions that
maximize the expected information gain.
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Figure 2.12: Top: Input image and ground truth. Bottom: Segmentations as estimated by three
different samples from the probability distribution after 0, 5, and 15 pushes (from
[van Hoof et al., 2014]).

Figure 2.12 shows an observed scene and the ground truth segmentation.
In the three rows underneath, the segmentations are estimated by three dif-
ferent samples from the probability distribution, where the first, second and
third column are generated after 0, 5 and 15 pushes respectively.

2.2.4 Tracking-based approaches

The following approaches focus on tracking parts of potential objects. This
means that individual visual features are tracked continuously during the
push, and their trajectories indicate whether they belong to the same object
or not.

Segmentation of cluttered scenes through interactive
perception

The approach presented in [Bersch et al., 2012] tries to segment objects in
a cluttered scene by pushing them in order to make them move differently.
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First, the table is detected and removed from the perceived scene point cloud,
and the cluster consisting of possibly several objects remains. The 2D outline
of that cluster projected to the table plane is determined, and concave edges in
that outline are found. They are considered to be potential object boundaries,
and therefore a push is executed through one of them parallel to the table
plane. In this way, the cluster is split up and the objects are caused to move
differently.

Figure 2.13: Different example scenes: The second row shows the outline of the object cluster
with convex and concave corners and the corresponding push vectors through
them. The third row shows the segmented subsets of features after pushing (from
[Bersch et al., 2012]).

Before the push is executed, Shi-Tomasi features ([Shi and Tomasi, 1994])
are detected in the object cluster, and they are tracked during the push. After-
wards, random pairs of these features are chosen, the 2D transformation that
they underwent is calculated for each tracking step, which corresponds to an
arm motion of 1 cm. The trajectories of all other features are checked for
conforming with that trajectory and, if they are, removed from the overall set.
This is repeated iteratively, and the result are subsets of features that moved
similarly during the push.

It is important to note here that the trajectories have to be consistent
throughout the whole motion, and that not only the overall transformation
is taken into account. A downside is that the authors report problems when
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2.2 Object segmentation by physical interaction

features get lost during the pushing due to occlusions caused by the hand of
the robot. While this approach is limited to textured objects which contain
enough features for robust tracking, the authors hint at the upcoming work
of [Hausman et al., 2013] which is presented in the next subsection.

Tracking-based Interactive Segmentation of Textureless
Objects

[Hausman et al., 2013] can be seen as a transfer of the ideas in [Bersch
et al., 2012] to textureless objects. Instead of using visual features, shape
descriptors are used for object tracking during the push. Point cloud data is
used, and the first step is to oversegment the objects that are placed on a table.
All possible combinations of up to eight connected segments are calculated,
and considered object hypotheses.

Figure 2.14: Two example scenes, the geometrical features being tracked, and their pairwise
distances (from [Hausman et al., 2013]).

The parts are classified as belonging either to flat/box-shaped or to round/-
cylindrical objects. The authors find empirical values for the expected num-
ber of parts forming one object, and based on those decide whether verifica-
tion by interaction is necessary. If it is, the same strategy for finding pushing
points and directions as in [Bersch et al., 2012] is used.

For tracking during the push, geometric features are used. In the case
of box-shaped objects, straight edges and corners are determined and the
point cloud in a 5 cm radius around them is used as a feature descriptor.
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For cylindrical objects, circular edges are determined. These geometrical
features are tracked using a particle filter. The trajectories of the tracked
features are clustered, and in the final step they are used as seeds for region
growing based on normal directions that yields the completed object point
cloud as the segmentation result.

Figure 2.14 shows two examples for this: The second column visualizes
the geometrical features being tracked, and the graphs in the third column
shows pairwise distances between these features during pushing. A signifi-
cant change in this distance indicates that the features lie on different objects.

From passive to interactive object learning and recognition
through self-identification on a humanoid robot

In [Lyubova et al., 2015] the focus is on autonomous learning of visual object
models by a robot. Here, motion is used first to direct the attention of the
robot and subsequently to segment the object from the background. Proto-
objects are detected using difference images, and they are then tracked using
Good Features to Track ([Shi and Tomasi, 1994]). Features are clustered by
similarity of the observed motion, and the visual appearance of objects is
learned using SURF features ([Bay et al., 2006]) as well as color descriptors
for textureless regions.

A notable characteristic of this work is that the robot also learns the appear-
ance of its own arms using the correspondence between proprioception and
observed motion, and the appearance of a human teacher that shows objects
to it. The discrimination between parts of the human and mere objects is
made based on the fact that the human moves on his own, while objects only
move when in contact with something else. By a combination of autonomous
interaction with objects and human demonstration, an incrementally growing
database ob multi view object representations is learned.
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2.2 Object segmentation by physical interaction

2.2.5 Discussion

The presented approaches show the potential benefits of having a robot in-
tentionally cause motion in a scene to support object segmentation. While
some works are rather a proof of concept that leaves parts of the problem
unsolved, others try to achieve very general and robust solutions.

The first step is to decide if and how to create initial object hypotheses and
how to push them. [Metta and Fitzpatrick, 2003], [Kenney et al., 2009] and
[Beale et al., 2011] use preprogrammed motions. [Li and Kleeman, 2009] and
[Lyubova et al., 2015] choose objects for pushing that are "interesting" in a
certain way by being symmetric or by moving. The approaches that intend to
separate objects try to move them away from one another ([Bergström et al.,
2011], [Hermans et al., 2012], [Bersch et al., 2012], [Hausman et al., 2013]).
The other approaches either choose a hypothetical object randomly ([Katz
et al., 2013]), choose the smallest one ([Chang et al., 2012]), or push from the
center of a cluster outwards ([Gupta and Sukhatme, 2012]). [Bergström et al.,
2011] and [Hermans et al., 2012] try to split a cluster by pushing one half of
it, while [Bersch et al., 2012] and [Hausman et al., 2013] have the opposite
intuition and want to achieve the same by trying to push in between the two
halves. Systematic approaches are proposed by [Hermans et al., 2012], who
pushes from all directions that might split the cluster along an internal edge,
and [van Hoof et al., 2012] who choose interactions such that an expected
information gain is maximized.

Tracking of the objects during the push, or re-localization afterwards, is re-
alized using optical flow ([Metta and Fitzpatrick, 2003], [Beale et al., 2011]),
difference images ([Kenney et al., 2009]), point cloud matching ([Hermans
et al., 2012]), geometric features ([Li and Kleeman, 2009], [Hausman et al.,
2013]), or local visual features ([Chang et al., 2012], [Bergström et al., 2011],
[van Hoof et al., 2012], [Bersch et al., 2012], [Katz et al., 2013], [Lyubova
et al., 2015]). While local visual features are probably the most reliable
choice, they also restrict the algorithm to sufficiently textured objects. On
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[Metta and Fitzpatrick, 2003] X ? X X X X

[Kenney et al., 2009] X ? X X X X

[Li and Kleeman, 2009] X X X X

[Beale et al., 2011] X X X X X X

[Bergström et al., 2011] X X X X

[Bersch et al., 2012] X X X X X X

[Chang et al., 2012] X ? ? X X X X

[Gupta and Sukhatme, 2012] X ? X X X X

[Hermans et al., 2012] X X X X X X X

[van Hoof et al., 2012] X X X X X X X

[Hausman et al., 2013] X X X X X X X

[Katz et al., 2013] X ? ? X X X ? X

[Lyubova et al., 2015] X X X ? X ? X

Table 2.1: Overview of the presented related work on interactive object segmentation. The
first four columns indicate for which types of objects the approaches are applicable.
The following four columns show how versatile they are with respect to the com-
plexity of the scene. The last column indicates whether the physical interaction is
performed by the robot autonomously, or whether it is manually preprogrammed.
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2.3 Object shape completion

the other side, using optical flow or difference images works also for non-
textured objects, but can not easily distinguish whether different objects are
being moved at the same time.

A large part of the presented approaches explicitly makes the very specific
assumption that the background is a table which is sufficiently empty for
being detected reliably ([Chang et al., 2012], [Gupta and Sukhatme, 2012],
[Katz et al., 2013], [Hermans et al., 2012], [Bersch et al., 2012], [Hausman
et al., 2013]). Others are only applicable to very simple scenes ([Li and
Kleeman, 2009]) or would probably fail when more than one object is moved
at once ([Metta and Fitzpatrick, 2003], [Kenney et al., 2009], [Beale et al.,
2011]). [Bergström et al., 2011] seems to have only been applied to scenes
with two objects. Only [Beale et al., 2011] explicitly claim robustness to
changes in the background, and [Lyubova et al., 2015] learn a model of
the human which may be active in the observed scene. [Beale et al., 2011],
[van Hoof et al., 2012] and [Hausman et al., 2013] initially oversegment
the scene, and it is unclear what happens when those segments stretch over
more than one object. Almost all of the presented approaches that can deal
with several objects moving at once make limiting assumptions about the
object. Most require texturedness, or they are restricted to specific shapes
or singlecoloredness. None is applicable in unrestricted clutter where the
background is unknown and complex, and objects are touching each other
and may be stacked. Table 2.1 gives a compact overview of the applicability
and restrictions of the presented approaches with respect to the considered
objects and scene setup complexity.

2.3 Object shape completion

Most algorithms for grasp or manipulation planning, collision avoidance etc.
require 3D models of the objects that are relevant for the respective task.
However, in reality robots can never perceive their environment completely.
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In the case of manipulable objects as considered in this thesis, their segmen-
tation from the environment is the crucial prerequisite for model generation.
But even with a perfect segmentation, a robot will not be able to perceive an
object from all sides without grasping, lifting and turning it. To plan such a
manipulation, in turn, requires a 3D model of the object1.

Thus, it can often be helpful to generate a complete model from the partial
object shape that has been perceived by the robot. This model can then be
used by a grasp planner, and if desired the grasped object can be observed fur-
ther from different sides, as e.g. described in [Welke et al., 2010]. Different
approaches for shape completion based on partial information are described
in the following subsections.

2.3.1 Shape approximation with geometric primitives

One line of research aims at approximating the shape of perceived objects by
geometric primitives. An example is the work of [Marton et al., 2011] who
try to fit boxes or cylinders to the objects, depending on which of the two
shape classes seems to approximate the visible object part better.

Figure 2.15: Left: Point cloud of a table with objects on it. Right: Objects remaining after
removal of the table plane, with the edge points highlighted in blue (from [Marton
et al., 2011]).

1 There are grasp planning approaches that do not require an explicit 3D model of the object, e.g.
[Kootstra et al., 2012], [Fischinger and Vincze, 2012] or [Lenz et al., 2015]. Most algorithms
do however presuppose that a complete and exact model is available.
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2.3 Object shape completion

They assume to have a mostly empty table with some objects standing on
it separately, which is perceived by a depth camera. They detect and remove
the table surface, and project the remaining points onto it. By clustering the
projected points, the objects are obtained, and the points on the edges of
the clusters are determined (see Figure 2.15). These edge points are used to
decide whether the object will be approximated by a cube or by a cylinder.
First, a 2D principal component analysis (PCA) is performed to determine
a bounding box. The authors then determine how well the bounding box
approximates the object shape: They calculate the average distance of the
edge points of the cluster to their bounding box, and normalize the distance
by the size of the bounding box in that direction. If the mean normalized
distance of the edge points to the bounding box is above a threshold, the
object is considered to be cylindrical rather than box-shaped.

If the object is to be approximated by a box, pairs of parallel lines are
fitted to the edge points. The pair with the maximal number of points within
an interval near it (or two pairs that are roughly orthogonal to each other)
is used to create the 2D base of the box. In the case of cylindrical objects,
circles are fitted (see Figure 2.15). If there are two circles where one contains
the center of the other, they are merged as they probably describe parts of
the same object.

Figure 2.16: Left: Examples for the edge points and their bounding box in the case of a box-
shaped and a cylindrical object. Center: The determined straight lines and circles.
Right: The reconstructed primitive shapes overlayed with the perceived point
cloud (from [Marton et al., 2011]).
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The minimal and maximal height of the 3D points of the cluster are used
to determine the height of the respective box or cylinder. Finally, the gener-
ated model is tested for its accordance with the perceived object: Points are
generated along the surface of the assumed shape, and the generated model is
rated based on whether they coincide with existing real points (which would
support the shape hypothesis), lie in an invisible area behind the perceived
points, or lie in a visible area far from the existing points (which would
contradict the shape hypothesis).

Another popular way to approximate shapes is to use superquadrics or
superellipsoids. An axis-aligned superellipsoid can be defined implicitly by
the equation

F(x) =

((
x
a1

) 2
ε2
+

(
y
a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

= 1

where a, b and c scale the shape along the main axes, ε2 influences the shape
of the cross section of the superellipsoid with a plane orthogonal to the z-axis
and ε1 influences the shape of the cross section with a plane that contains the
z-axis. Depending on those parameters, it may take the shape of e.g. cubes,
cylinders, spheres or bicones.

Including the 6 degrees of freedom for position and orientation in space,
a superquadric or a superellipsoid has 11 free parameters that need to be
estimated when fitting it to a perceived point cloud. [Biegelbauer and Vincze,
2007] assume that the shape parameters are already known and only estimate
the pose. To solve the full fitting problem, [Duncan et al., 2013], building
on the work of [Solina and Bajcsy, 1990], formulate it as an optimization
problem where, given a set of points xk, the parameter set Λ needs to be
optimized to minimize the sum

n

∑
k=0

(
√

a1a2a3 (Fε1(xk;Λ)−1))2
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applying the iterative Levenberg-Marquardt algorithm ([Moré, 1978]). The
term

√
a1a2a3 makes sure that smaller shapes are preferred, and by expo-

nentiating with ε1 the error metric becomes independent of the shape factor
which is supposed to accelerate convergence. The parameters are initialized
such that the shape of the superellipsoid is that of an ellipsoid along the prin-
cipal axes determined by principal component analysis (PCA) of the object
point cloud.

The optimization in the 11-dimensional parameter space requires huge
computational effort, in particular when the point cloud contains a large
number of points. To reduce the effort, the point cloud is downsampled using
a voxel grid. They start with a coarse grid, which reduces the point cloud
significantly and thus allows quick optimization, and refine the grid itera-
tively until the error reduction is below a threshold or a minimal voxel size
is reached.

2.3.2 Symmetry-based shape completion

Another popular assumption that can be made about the partially known
object is that it possesses some kind of symmetry. Early work in that direc-
tion was done by [Grupen et al., 1988]. They approximate the perceived
object surface by planar patches and estimate their centroid, size and normal.
The volume of the object is subdivided into discretized bins, and for each
surface patch, the normal is followed from the centroid through the object
and the value of each bin is increased by a weight equal to the size of the
surface patch. In this way, a discretized estimation of the mass distribution
is created. By means of a principal component analysis (PCA) of that mass
distribution, its principal axes are determined. Based on their corresponding
eigenvalues, the object is classified as line-shaped, planar or spherical, and
the corresponding symmetry type (axial, planar or spherical) is thus deduced.

The authors of [Thrun and Wegbreit, 2005] propose a hierarchy of sym-
metry types that they try to detect efficiently, starting with simple ones and
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possibly combining them to more complex ones. Figure 2.17 shows the basic
symmetry types they consider. On the left are reflectional symmetries, where
each point can be mirrored either on a plane, a line, or a point. On the right
are rotational symmetries where each point can be rotated around an axis or
a point.

Figure 2.17: Different kinds of symmetry that exist in 3D space (from [Thrun and Wegbreit,
2005]).

The main challenge is to detect these basic symmetries in the point cloud.
The authors segment the scene into compact point sets, which serves to seg-
ment it into candidates for symmetric objects or object parts. In each of these
subsets, the optimal parameters for each basic symmetry type are determined
using optimization with a rating function based on visibility criteria similar
to [Marton et al., 2011], where the mirrored points should lie amongst the
perceived points or otherwise should not be visible. If a basic symmetry type
with a good final rating can be found, it is accepted.

From these basic types, composite symmetries can be constructed. For
such a higher order symmetry to exist in a point cloud, the constituting basic
symmetries must be present in it. The search for the composite symmetries
can thus be restricted to the types that can exist given the detected basic sym-
metries. Additionally, the parameters of the composite types are restricted
by those of the constituting basic symmetries which significantly speeds up
and facilitates the search. Figure 2.18 gives a schematic overview of the
considered symmetries and their hierarchy.

Another approach to object shape completion based on symmetry was pro-
posed by [Bohg et al., 2011]. Here the explicit aim is to create object models
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Figure 2.18: The hierarchy of symmetry types, where the basic types on the bottom constitute
the higher order types above. The schema also gives the number of points or
the space to which a point is reflected by this symmetry type (from [Thrun and
Wegbreit, 2005]).

for grasp planning based on the point cloud of the object that was perceived
from a single view. Their work is the basis for the approach developed within
this thesis and described in chapter 4.

The assumption made in this work is that the object has a planar symme-
try. In order to restrict the search space and to enforce that a back side is
generated to complete the object shape that was only seen from the front, the
symmetry plane is assumed to be orthogonal to the table on which the object
is placed, and its orientation around the vertical axis is also restricted so that
it is not parallel to the view axis of the camera.

The remaining space of possible orientations is sampled in regular inter-
vals. For each possible orientation, symmetry plane candidates are generated
at regular translational intervals in the direction perpendicular to the plane
within the extent of the perceived object point cloud.

The symmetry plane candidates are rated somewhat similarly to [Thrun
and Wegbreit, 2005] and [Marton et al., 2011]: All perceived points are re-
flected at the symmetry plane. If a point lies in a location where it would
have been visible to the camera, this contradicts the symmetry plane hypoth-
esis and thus leads to a bad rating. Points that coincide with perceived points
support the candidate plane, and those that lie behind the existing points and
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can not be perceived by the camera give additional information about the
object shape. The symmetry plane candidate with the best rating is finally
used to mirror all perceived points and thus create the back side of the object.

2.3.3 Shape modeling with extrusions

An extrusion is a 3D shape that is created by moving a 2D silhouette along a
trajectory. This potentially allows to model a large variety of shapes, but it
is unclear how to determine the silhouette and the trajectory in the general
case. Therefore, [Kroemer et al., 2012] restrict the trajectory to be either a
straight line or a circle. In that case, the resulting shape is symmetric. They
find the symmetry with a voting-based approach ([Mitra et al., 2006]), where
the normal at each point is estimated and pair-wise symmetries are searched
and vote for symmetry planes with corresponding parameters.

Figure 2.19: Examples for shape completion using extrusions (from [Kroemer et al., 2012]).

Given a symmetry plane, for a linear extrusion, the object point cloud is
divided into the two parts on both sides of it. Iterative closest point (ICP) is
used to shift one half over the other, and the resulting translation is the initial
estimation of the linear path of the extrusion. For a rotational extrusion, the
point cloud is split in two parts based on the normal directions of the points,
and the result of ICP aligning the two parts gives the rotation for the extrusion
path.

Based on these initial estimations of the path, the 2D shape is determined
that defines the extrusion by moving along the path. An iterative refinement
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process on both is performed to fit well to the perceived object points. Fi-
nally the extrusion is rated based on visibility criteria as in the approaches
described above.

Figure 2.19 shows some results of this algorithm. The objects in the top
row were perceived with a depth sensor from one perspective, the bottom
row shows the resulting extrusions. Another approach that uses extrusions as
well as approximation by superquadrics to generate object models for grasp
planning was proposed by [Huamán Quispe et al., 2015].

2.3.4 Discussion

When aiming at completing the shape of an object that has only been per-
ceived partially, making assumptions about the shape of the invisible part is
unavoidable. Under these assumptions, one then has to find the reconstruc-
tion parameters that give the result which fits best to the available informa-
tion. Consequently, the proposed methods differ mainly in the assumptions
they make about the object shape, how they restrict the parameter search
space, and how they decide which of the completions possible under their
assumptions is considered the best.

[Marton et al., 2011] try to fit rather simple geometric primitives to the
objects, and propose efficient preprocessing steps that probably allow a very
quick determination of their parameters. Their results are however restricted
to be boxes or cylinders, which would be insufficient for e.g. grasp planning
when the real object has a significantly more complex shape. Somewhat
related is the approach of [Schnabel et al., 2009] who try to fill holes in ob-
ject models with geometric primitives, but require relatively complete initial
shape knowledge.

Superquadrics allow for a larger variety of shapes, but that comes at the
cost of an 11-dimensional parameter space in which good values have to
be searched. In order to keep the computational effort manageable, [Biegel-
bauer and Vincze, 2007] assume that some parameters are known, which
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is inappropriate when dealing with unknown objects. [Solina and Bajcsy,
1990] and [Duncan et al., 2013] use optimization techniques to search the
parameter space. To limit the necessary effort, [Duncan et al., 2013] down-
sample the object point cloud, and iteratively increase its size again in the
later refinement phase of the optimization process.

Extrusions are a comparably versatile shape class, however to estimate
them given a partial point cloud further assumptions have to be made as
was done by [Kroemer et al., 2012] and [Huamán Quispe et al., 2015]. With
these restrictions, the extrusions become a subset of the objects that have at
least a planar symmetry. Thus despite the more complicated modeling and
estimation process, using such restricted extrusions for shape estimation is
more limiting than the symmetry assumptions made by [Bohg et al., 2011]
or [Thrun and Wegbreit, 2005]. The parametric character of the extrusions
may however be exploited for grasp planning as done by [Huamán Quispe
et al., 2015].

The approach for shape completion which is presented in this thesis takes
the work of [Bohg et al., 2011] as its starting point. The assumption of pla-
nar symmetry allows for a large variety of shapes and is fulfilled or approxi-
mately fulfilled by most artificial and many natural objects. Of course there
are objects that contain significant asymmetries, so when a grasp is planned
with an object model that was created based on the symmetry assumption,
prudence is advisable when actually executing the grasp.

2.4 Reactive grasping

Visual perception can not always provide all information necessary for suc-
cessful grasping, and due to imprecisions in perception as well as motion a
robot may fail when executing a grasp. The ability to detect such failure and
correct the grasping behavior is crucial for the real-world aptness of robots.
The preferred sensing modalities for contact detection during grasping are
tactile and force sensors. An extreme case is blind grasping, where little or
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no visual information is used and the grasping is based almost solely on
haptic feedback. The application that is of interest in this thesis is reactive
correction behavior during grasp execution. The contribution made here is
a method for visual collision detection. Other approaches related to these
topics are presented in the following subsections.

2.4.1 Blind grasping

The motivation behind approaches for blind grasping is that haptic informa-
tion can be sufficient for grasp execution. When contact with the object is
detected, this is used to adapt the hand pose or finger configuration in a way
that is expected to lead to a successful and stable grasp. [Ozawa et al., 2006]
propose a controller for multi-finger pinch grasps using tactile contact infor-
mation. Based on the tactile feedback, the fingertips exert forces in a way
that stabilizes the object between them (see Figure 2.20). It seems though
that the controller has only been tested in simulation.

Figure 2.20: Example of a three-finger pinch. The red arrows visualize the contact forces
generated by the controller (from [Ozawa et al., 2006]).

[Dang et al., 2011] train a Support Vector Machine (SVM) classifier to
recognize stable grasps based on tactile sensor information and the kinematic
configuration of the hand. They simulate a large number of grasps and the
corresponding tactile feedback to get training samples for their SVM, and
test it with simulated grasps on different objects.
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Figure 2.21: The robot hand approaches the object from the top. When contact occurs, the
torque measured in the wrist is used to decide in which direction the hand is
moved in order to correct the grasp position (from [Felip et al., 2012]).

[Felip et al., 2012] realized a complete reactive grasping pipeline: The
robot hand approaches the object, or in their experiments a basket with some
objects inside, from the top. Contact between the hand and the object is de-
tected using a force-torque sensor in the wrist. Depending on the detected
torque, the finger that is pressing onto the object is determined. The hand is
lifted slightly and a horizontal translation is performed in the direction of
that finger with the intention of bringing it besides the object. The hand then
moves down again, and if another contact is detected, another corrective reac-
tion is performed (see Figure 2.21). This is repeated until all fingers touch the
supporting surface below the object, which causes a roughly vertical force
and no torque, in which case the fingers are closed to grasp the object.

2.4.2 Reactive grasp correction

During grasp execution, tactile sensing can be used to correct the grasping
motion by recognizing the occurrence of premature collisions. An example
for this is the work by [Hsiao et al., 2010]: The object is approached for
grasping with a two-finger gripper. When a collision is detected on a fingertip,
the gripper retreats a bit and its position is changed into the direction of
contact. If another contact is detected, then the same reaction is executed if it
was the same finger. If it was the other one, then the correction is performed
in the other direction but only with half of the step size. Contacts on the
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inner side of the fingers are ignored, and contacts on the palm indicate that
the object was reached, thus the approach is stopped and the fingers are
closed. Tactile feedback is also leveraged while closing the fingers: When
contact is detected on only one finger while closing the gripper, the controller
is changed such that that finger does not move anymore to avoid displacing
the object. When both fingers have contact with the object, the tactile sensors
indicate whether the grasp will be stable: If the contact is only on the edge
of the fingers, the gripper is opened and repositioned to achieve more robust
contact locations.

Figure 2.22: Different stages of grasp execution with reactive corrections during the approach
of the hand as well as closing the fingers on the object (from [Hsiao et al., 2010]).

Other work where tactile sensors are used to estimate the stability of a
grasp before lifting and, if necessary, modify the grasp, includes [Dang and
Allen, 2014], [Platt, 2007] and [López-Coronado et al., 2002].

2.4.3 Visual collision detection

All approaches based on force or tactile feedback require that the object
resists the robot hand sufficiently so that a force can actually be measured.
This is not always the case: When e.g. a light object is grasped from the
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side, it might be moved without causing sufficiently clear sensor values that
would indicate that a collision occurred. One way to circumvent this is to
use proximity sensors as in [Hsiao et al., 2009], another way is to use visual
information.

This idea is followed by [Bernabe et al., 2013] who attempt to visually
detect collisions during grasping. They obtain an RGBD point cloud from
a static depth camera observing the scene which consists of a table surface
with only the object on it and the robot arm, of which a geometric model is
available.

Figure 2.23: While the robot is grasping an object, the perceived point cloud is divided into
arm (green), hand (red), and object (purple) (from [Bernabe et al., 2013]).

The object point cloud is segmented in each frame by removing the table
surface, and tracked using ICP from one frame to the next. If the translation
or rotation returned by ICP is above a threshold, the object is considered to
have moved. The arm is also tracked in the perceived point cloud, and when
the object moves while the arm is near it, a collision is assumed to have
occurred. The most probable part of the hand to have caused the collision
is determined based on an occupancy grid map of the object point cloud
and the geometric model of arm and hand. This information can be used to
implement a reaction strategy, although this is not described in the paper.
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2.4.4 Discussion

Monitoring grasp execution for premature collisions that may cause failure
is essential when designing a robotic grasping skill that is supposed to work
reliably under realistic conditions. Checking for failures is particularly im-
portant when dealing with high uncertainties, e.g. when grasping unknown
objects. Intuitively, tactile sensors seem like the appropriate modality for
detecting collisions of the hand of the robot with the object, as is done by
[Ozawa et al., 2006] and [Hsiao et al., 2010]. Simple force-torque sensors
can also be helpful and were used successfully in [Felip et al., 2012].

There are, however, two practical limitations on the use of these sensors:
The first is that on currently existing robots that have tactile pads, they cover
only a part of the hands. This may become less of a problem as these sensors
become cheaper and more flexible to install. The second, more serious prob-
lem is that for light contacts the sensitivity of current sensors is insufficient,
and even if it were sufficient a very light contact might be indistinguishable
from sensor noise, or the effects of small accelerations when using force-
torque sensors.

A complementary sensing modality is vision, which can be applied in
exactly the situations in which the force-based modalities may fail: When
there is a light object that starts moving when touched and does not offer
significant force resistance. Detecting such a movement is the idea behind
the work of [Bernabe et al., 2013] as well as the approach presented in this
thesis.
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3 Object segmentation by
physical interaction

The main contribution of this thesis is an approach for segmenting unknown
objects in complex, cluttered environments by exploiting the ability of huma-
noid robots to interact purposefully with their environment. Initially, the
robot generates object hypotheses based on the visual input following some
heuristic criteria. These initial object hypotheses may correspond to actual
objects, but they may also cover only parts of an object or contain two or more
different objects. In order to verify and correct these hypotheses, the robot
interacts with the objects by pushing them to cause motion. This motion
is then used as an additional cue that helps to verify or discard the object
hypotheses, to remove parts of them that do not belong to the actual object
and extend them to cover the object completely.

The approach is designed to work in extremely cluttered scenes where
many unknown objects may be touching each other, be stacked, or lie in a

Figure 3.1: The robot ARMAR-III pushing an object in a cluttered scene.
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completely unordered heap. No assumptions are made about the background,
the only crucial assumptions made are that the object that will be segmented
can be moved by the robot, fits into the camera images, and moves as a rigid
body, i.e. does not undergo significant deformations. The result is a segmen-
tation of usually very high quality, that is verified by physical interaction
to correspond to an actual object. The steps of the proposed algorithm are
described in detail in this chapter, and the results are evaluated in section 6.1.

3.1 Creation of initial object hypotheses

Initial object hypotheses are required to guide the physical interaction. The
robot needs an idea where movable objects may be located in order to be
able to perform a targeted pushing action, which in turn causes actual objects
to move and thus allows the visual segmentation. This means that the initial
hypotheses do not need to constitute good segmentations, but rather they
should only indicate the presence of objects.

Three different and somewhat complementary heuristics are used to gener-
ate initial object hypotheses. They are described in the following subsections.

3.1.1 Single-colored regions

An intuitive indicator for potential objects are connected image regions of a
single color. While only a small subset of all actual objects has only one color,
such regions are an effective clue for this class as well as for single-colored
parts of larger objects.

Single-colored regions are determined in the camera images using a vari-
ant of maximally stable extremal regions (MSER, [Matas et al., 2002]). The
original algorithm finds regions in greyscale images that have similar bright-
ness values and stay constant when the brightness threshold used to create
them is varied. Thus these regions are significantly different from their direct
surroundings, and robust to variations in illumination and threshold param-
eters. They are determined efficiently based on a watershed algorithm. In
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3.1 Creation of initial object hypotheses

[Forssen, 2007], this idea is extended to color images to find regions of simi-
lar color that are robust. It is implemented e.g. in OpenCV ([Bradski, 2000]).

3.1.2 Geometric primitives

Another heuristic that is particularly useful for artificial objects is to look
for geometric primitives like planes, spheres and cylinders. Such simple
geometric structures often correspond to a part of, or a complete object. Most
artificial objects can be described by one or more of these simple geometric
structures, and also many natural objects can be approximated by them. Thus,
such a primitive is a strong indicator for a physical object. In the 3D data
obtained from stereo cameras or depth cameras, three types of primitives
are determined and used as initial object hypotheses: Planes, spheres, and
cylinders.

Planes

Given the perceived point cloud of a complex scene, finding a plane in it is
difficult, as the vast majority of the points will be outliers with respect to
any plane contained in the point cloud. In order to find the dominant planes,
the Random Sample Consensus algorithm (RANSAC) proposed by [Fischler
and Bolles, 1981] is used. The idea of RANSAC is to draw minimal random
samples from the point cloud that can define the desired geometric primitive,
and then count the number of inliers for it in the complete set.

A plane is uniquely defined by three non-collinear points p1, p2, p3. With
v1 = p2− p1 and v2 = p3− p1, the surface normal is n = v1× v2. The plane
is then defined by the equation nT x+ d = 0 with d = −nT pi for any pi ∈
{p1, p2, p3}. When n is normalized, the equation nT x+d gives the distance
of a point x from the plane.

For a plane defined by a random sample, the distance of each point in the
scene to that plane is calculated and the number of inliers within a margin
around the plane is determined. The plane with maximal support is retained,
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3 Object segmentation by physical interaction

all inliers are removed from the point set, and the search is repeated. This is
done iteratively until no more plane with at least a minimal support is found.

The determined planes may correspond to object surfaces, but they may
also extend over two or more objects that are arranged in a way such that their
surfaces are coplanar. To reduce the occurrence of this problem, clustering
is performed on the planes to split them up if necessary. After this clustering
it is still possible that two neighboring objects are subsumed in one plane.
However, if such an object hypothesis is pushed, then the motion will most
likely split it up.

Spheres

Finding spheres in the scene point cloud is done in the same way as de-
tecting planes. A sphere is uniquely defined by four points which are not
coplanar. The sphere’s center c and radius r can be calculated by solving the
determinant equation

|M|= 0,

where M is defined as

M =



xT x xT 1

pT
1 p1 pT

1 1

pT
2 p2 pT

2 1

pT
3 p3 pT

3 1

pT
4 p4 pT

4 1


.
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With Mi j denoting the submatrix of M formed by leaving out row i and
column j, the solution is given by

c =
1
2



|M12|
|M11|

−|M13|
|M11|

|M14|
|M11|


, r = cT c− |M15|

|M11|
.

If |M11| = 0, the four points are coplanar and there is no solution. To
find a sphere, RANSAC is used as described above. In contrast to planes,
subsequent clustering did empirically not seem to be necessary.

Cylinders

Finding cylinders is more difficult than finding planes or spheres. In [Beder
and Förstner, 2006], methods are presented that allow the calculation of
cylinder parameters given 5 - 9 points on its surface, but only the methods
that require 7 or 9 points return a unique solution. In all cases, equation
systems must be solved that require a relatively high computational effort.
Moreover, the probability of randomly selecting 7 points belonging to a
cylinder is rather small if the overall set consists mainly of outliers, which is
usually the case in nontrivial scenes. Therefore, many iterations of RANSAC
would be necessary to find good cylinder parameters.

Therefore, instead of using the direct RANSAC approach, the idea pre-
sented in [Chaperon and Goulette, 2001] is followed. Two nested RANSAC
loops are executed which are both computationally inexpensive. In the outer
loop, promising candidates for the cylinder axis are discovered. In the inner
loop, the points are projected onto a plane that is orthogonal to the candidate

53



3 Object segmentation by physical interaction

  

cylinder 
axis

Figure 3.2: Gaussian image of a perfect cylinder, and of the real 3D data perceived from a
cylindrical object.

cylinder axis, which reduces the problem of finding the other cylinder param-
eters to the search for the best two-dimensional circle within the projected
points.

Finding cylinder axis candidates requires the calculation of the Gaussian
image of a 3D point cloud. The Gaussian image consists of the surface
normals at each of the 3D points. With surface normals having unit length,
this is equivalent to a set of points on the unit sphere. The Gaussian image is
calculated by approximating the surface normal at every 3D point using its
nearest neighbors.

The surface normals of a cylinder form a great circle on the unit sphere
(see Figure 3.2), therefore great circles in the Gaussian image that contain a
large number of estimated normals are of interest. The axis of the cylinder is
perpendicular to the corresponding great circle. The search for great circles is
simplified by the fact that it is equivalent to the intersection of the unit sphere
with a plane through its center. Such a plane is uniquely defined by two
normals, i.e. two points on the unit sphere, and its center. This allows efficient
use of RANSAC for planes to find great circles with maximal support. Figure
3.2 shows on the left how the Gaussian image of a perfect cylinder would
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3.1 Creation of initial object hypotheses

look like. The right image shows the Gaussian image resulting from a set of
3D points in a scene containing a cylindrical object. Only the front side of
the object is visible for the cameras, therefore only half of the great circle is
present in the Gaussian image.

Given a cylinder axis, the next step is to find a radius and offset such
that the maximal number of points lie on the cylinder surface. This can be
simplified by projecting all points to a plane perpendicular to the axis and
searching for the circle that contains the maximal number of the projected
points. The search can be further sped up by considering only those points
that have contributed to the great circle in the Gaussian image which defined
the cylinder axis.

A 2D circle is uniquely defined by 3 non-collinear 2D points (xi,yi) with
i∈ {1,2,3}. The coordinates of the center of the circle (xc,yc) are then given
by

xc =
(y3− y2)(x2

1 + y2
1)+(y1− y3)(x2

2 + y2
2)+(y2− y1)(x2

3 + y2
3)

2δ

yc =
(x3− x2)(x2

1 + y2
1)+(x1− x3)(x2

2 + y2
2)+(x2− x1)(x2

3 + y2
3)

2δ

where
δ = x1(y3− y2)+ x2(y1− y3)+ x3(y2− y1).

The cylinder radius is r =
√
(x1− xc)2 +(y1− yc)2, and the offset is an arbi-

trary point on the line that results from the backprojection of the circle center
into 3D space.

3.1.3 Salient regions

The heuristics for single-colored and simply-shaped objects cover a wide
variety of possible appearances. In order to detect objects that do not fall
into one of those categories, a third cue was implemented. Salient image
regions that are not yet covered by one of the other heuristics are also used to
create initial hypotheses. The term salient is used in the context of cognitive
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Figure 3.3: A relatively simple and a confusing scene with their respective saliency images,
generated with the algorithm from [Achanta et al., 2009].

sciences and means that something is visually "sticking out", i.e. it catches an
observers attention (see e.g. [Frintrop et al., 2010], [Itti et al., 1998]). A more
practical definition is that it should look significantly different compared to
its nearby environment.

To calculate a saliency map of the camera image that quantifies the
saliency of each pixel, the approach proposed in [Achanta et al., 2009]
is used. In that work, saliency is defined as the difference of an image region
to its neighborhood, which is calculated at different scales using band-pass
filters. The filters are realized using a Difference of Gaussian (DoG) filter
G(x,y,σ j)−G(x,y,σk) with σ j > σk. Summing up all edge images at differ-
ent scales is equivalent to using a filter that is the sum of all filters, which
can be simplified as follows:

N

∑
n=1

G(x,y,σn)−G(x,y,σn+1) = G(x,y,σ1)−G(x,y,σN)

Thus the resulting saliency image is calculated as

S = |G(σ1)∗ Img−G(σN)∗ Img| ,

i.e. the difference of the image after being filtered with a Gaussian kernel
with the lowest and highest desired standard deviation. This is done for all
three color channels of the RGB image, and the results are added. Good
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3.1 Creation of initial object hypotheses

results with the used cameras were obtained by choosing σ1 = 80px, which
limits the size of detected regions to a size that corresponds to the maximal
extent an object is expected to have in the image, and σN = 10px which
smoothes out the fine textures. Two examples for saliency images can be
seen in Figure 3.3.

3.1.4 Filtering of the initial hypotheses

In a complex scene, the combined use of all three heuristics yields a large
number of initial object hypotheses. Figure 3.4 shows two examples for the
kind of scenes considered here, and the initial hypotheses that are generated
in them. Having many object hypotheses is not a fatal problem, as the robot
could just systematically try all hypotheses, including those that result e.g.
from the tablecloth. But it can save a lot of time to filter out the dispensable
hypotheses beforehand.

Figure 3.4: Two example scenes, and the initial object hypotheses generated in them.

Therefore, as only those objects that can be moved by the robot are rele-
vant, an additional filtering is applied in order to keep only those hypotheses
that seem to allow pushing. A simple criterion for estimating if this is the
case is to check whether a candidate object is higher than its direct neigh-
borhood. The camera image is subdivided into regular bins, and in each of
them the average height of the contained 3D points is calculated. Every bin
is compared to its eight direct neighbor cells. By doing this at different scales
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and adding up the results, a map is created that gives a value for the rela-
tive local height of the image regions. This map is used to filter the object
hypotheses and keep only those that lie in a region which is higher than its
direct surroundings.

3.1.5 Representation of the object hypotheses

Camera images as well as 3D information are used throughout the approach.
When working with a stereo camera pair, the 3D position of a pixel in the
camera image is obtained using dense stereo matching with the semi-global
block matching algorithm proposed by [Hirschmuller, 2008]. When using
a camera with active depth perception like the Kinect, the distance of each
point from the camera is immediately available.

In both cases, the available visual information consists of a camera image
in which each pixel is associated with a 3D position. This is usually referred
to as RGBD (RGB+depth) data. After the initial object hypotheses have
been generated, each one is represented by the RGBD points in the image
region that it occupies. Thus, an object hypothesis is represented as a set of
3D points with associated color information. When needed, the location of
such an object point in the camera image is obtained by projecting it into
the image plane using the known camera parameters. In this way, the image
region occupied by the object can be determined. In the rest of this chapter,
for most steps of the segmentation algorithm the color-annotated point cloud
is used though.

3.2 Induction of object movement by pushing

One of the hypothetical objects is chosen to be moved in order to verify its
objectness and create an additional cue for its segmentation. Unless there are
reasons to choose a specific hypothesis, it makes sense to select an object that
is well within the area that is reachable by the robot, and has an appropriate

58



3.2 Induction of object movement by pushing

  

central point
hypothesis 
center

estimated 
object extent

robot hand 
extent

push direction

Figure 3.5: Key points of the pushing motion, depending on the estimated object position and
size.

size with respect to the physical manipulation and perception components of
the robot.

3.2.1 Generation of a pushing trajectory

As a priori nothing certain is known about the object, attempting to plan
and perform complex manipulation actions is not very promising. Instead,
a simple pushing action is executed to cause the object to move, and thus
gain more reliable information about it. The motion to be induced on the
object must be significant enough to be clearly distinguishable from noise
and misperceptions. On the other hand, the resulting object motion should
not be so large that it completely changes the object’s appearance, which
would make it difficult or impossible to relocalize and verify the hypothesis
after the push. In particular, the object needs to stay within the robot’s field of
view and inside the area that the robot can reach with at least one of its arms.
The latter aspect becomes increasingly more important when the object is
pushed several times.

The object position is assumed to be the mean of the points contained in
the hypothesis. Although this is not the true position of the object center, it
is a sufficient approximation for the generation of a simple pushing action.
To direct the push, a central point is chosen, which is positioned right in
front of the robot at the same height as the hypothetical object. This point is
well within the field of view of the robot and is also easy to reach with both
arms. The starting point of the pushing movement is taken to be on the side
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of the hypothesis that is opposed to the central point. The main difficulty
is to choose the right offset from the object center, as the size of the object
is unknown. It is estimated by taking the maximal distance of hypothetical
object points from the center of the hypothesis. To this value, the size of the
robot hand and a safety margin are added (see Fig. 3.5). The end point of the
pushing movement is determined by calculating a point at a fixed distance
from the starting point towards the central point.

Consequently, the object is expected to be pushed into the direction of
the central point, and over a fixed distance. In the long term, that means
that over a large number of pushes its position will be oscillating around the
central point. Thus it will be in a central region within the field of view, well
reachable by the robot, and each pushing action will move it roughly over the
intended distance. While in the long term it is interesting to reveal different
sides of the object for learning, it is initially not helpful to intentionally cause
larger rotations, as they increase the difficulty of relocalizing the object.

3.2.2 Execution of the pushing action

Before and after executing the push, the robot is in an initial pose in which
its arms and hands are outside the field of view to avoid occluding the object.
Starting from this initial pose, the hand is moved in straight lines to four
keypoints:

• to a position above the starting point for the pushing movement

• downwards to the starting position for pushing

• to the end position of the intended push trajectory

• to a position above the end position for pushing

In the end, the robot moves back to its initial pose with the hand outside
the field of view. By first moving the hand to a position above the starting
point for the pushing motion, unexpected collisions with other objects in the
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scene can mostly be avoided. It is therefore not necessary to use sophisti-
cated approaches for collision-free path planning, which would be difficult
to accomplish in scenes with many unknown objects.

Figure 3.6: Reachability values on a pushing path for the left hand of ARMAR-III. Dark red
dots indicate low, bright dots high reachability values.

One of the two hands of the robot has to be chosen for executing the
push. A useful criterion for this decision is to analyze the reachability of
both hands as described in [Vahrenkamp et al., 2012a]. The reachability is
encoded as a discretization of the Cartesian space around the robot that gives
information about the probability that an inverse kinematics solution exists
for a given 6D pose. This allows to determine whether a position can be
reached by one of the robot hands and how flexible the selected hand is in
this area. The robot should use the hand that is more versatile during the
whole course of the pushing motion, therefore the reachability along the
whole pushing trajectory is integrated. Figure 3.6 shows an example of such
a path. The hand that accumulates higher reachability over the complete
trajectory is selected for pushing. A much simpler criterion that works as
well is to choose the left hand when the push direction is from left to right,
and the right hand when it is from right to left.

In cluttered scenes, the hand may still collide with other objects, especially
during the phase when it is lowered to the starting position for pushing. Such
collisions are detected by the force-torque sensor in the wrist of the robot.
If such a collision occurs, the hand is raised again and lowered a bit closer
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to the estimated object position. This is repeated until it could be lowered
without collision. If the hand collides with an obstacle several times, the
correcting movements eventually bring it very close to the object. When the
hand is so close to the estimated object center that it is probably positioned
above the object, the robot moves it down until contact with the object and
executes a sliding movement instead of a push. This reactive strategy enables
the robot to move the objects even in very difficult situations.

Figure 3.7 shows example trajectories of the hand during pushes with
and without collisions. The trajectory represented by the continuous red line
was recorded during an undisturbed push, while the dashed green one was
generated when the hand hit an obstacle twice before it could be lowered
besides the object. The forces arising due to collisions with the obstacle are
shown by the dotted blue line.
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Figure 3.7: Trajectories of the robot hand during two pushes.

3.3 Estimation of the object motion

The robot’s push may have moved one or more objects in the scene. Track-
ing an unknown number of unknown objects during the pushing motion,
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3.3 Estimation of the object motion

where they may at times be occluded by the robot’s hand and arm, would be
extremely hard. Therefore, the objects that moved are relocalized after the
push instead, using the initial hypotheses and the change in the scene that
was caused by the physical interaction.

3.3.1 Finding changed image regions

The first step is to determine whether the pushing action had any effect
and which parts of the scene were changed. This is done by comparing the
camera images before and after the push. Just calculating the difference
of the two images would be very sensitive to image noise and changes of
illumination. Therefore, before the push, n = 5 images are recorded, and for
each pixel the mean and covariance matrix of its hue and saturation value are
determined. That means that for every pixel there is a two-dimensional mean
µi and covariance matrix Σi of its hue and saturation value. Assuming that
the camera image is subject to normally distributed random noise in each
pixel, the probability that a pixel i takes on the value x is

Pi(x) =
1√

(2π)2 det(Σi)
e−

1
2 (x−µi)

T Σi(x−µi).

In the new camera image after pushing, this probability is calculated for
each pixel, and if it is below 0.5 the image is considered to have changed
in this pixel. The result is a binary mask that indicates in which parts of
the image the scene has changed. By applying morphological operations,
spurious pixels caused by noise are removed and contiguous changed image
regions are closed.

Using the resulting binary mask, each of the initial object hypotheses is
checked for lying in a part of the scene that changed. If more then half of the
points belonging to it are in such a region, this indicates that the underlying
object has moved and thus a relocalization will be attempted. Otherwise
no additional information about the underlying object can be gained, so the
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hypothesis is discarded. If the whole scene is unchanged, the push obviously
failed to move an object, and the process is restarted by generating new initial
object hypotheses.

The detected change in the scene is also used to generate more object
hypotheses. In the altered regions, geometric clustering is used to create at
least two new hypotheses - if an object moved, the camera images differ at its
old and new location. If a single object was moved significantly, the clusters
often form extremely good hypotheses. If several objects move, their quality
varies strongly.

3.3.2 Iterative closest point (ICP)

The relocalization of the objects that were moved by the robot’s push is
primarily based on the Iterative Closest Point (ICP) algorithm proposed by
[Besl and McKay, 1992] (a somewhat similar idea was presented by [Chen
and Medioni, 1991]). The aim of this algorithm is to align two point clouds
C1 and C2 by finding the rigid transformation that minimizes the mean square
distance of each point pi ∈C1 to its nearest neighbor NC2(pi) in C2, i.e. that
minimizes

d(C1,C2) =
1
|C1| ∑

pi∈C1

(pi−NC2(pi))
2.

Starting from an initial alignment, the algorithm iteratively applies rigid
body transformations, i.e. a rotation and translation, to the points in C1, that
reduce the mean square distance d(C1,C2) of C1 to C2 (note that this dis-
tance measure is not symmetric). The following steps are repeated until a
convergence criterion is fulfilled:

• For each point pi ∈C1, its nearest neighbor NC2(pi) in C2 is determined.
This can be done in expected time O(|C1| log |C2|) using a KD-tree.

• Based on these correspondences, the 3D transformation that minimizes
the mean squared distance between all the pairs is calculated. This is
done using the method described in [Horn, 1987].
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3.3 Estimation of the object motion

• The determined rotation and translation are applied to all pi ∈C1.

These iterations are repeated until the reduction of d(C1,C2) is below a
threshold or a maximal number of iterations has been performed. In each step,
the mean square distance is reduced, until the algorithm converges. However,
it converges to a local optimum depending on the initial position and ori-
entation of the two clouds, and thus does not necessarily find the globally
optimal alignment (see Figure 3.8).

Figure 3.8: Examples of ICP in 2D: On the left is a successful alignment, on the right the
unfortunate initialization leads to a bad local minimum.

3.3.3 Object relocalization

For the relocalization of a pushed object in a complex scene, ICP in its
original form is not suitable. While it works well for aligning two relatively
similar point clouds, finding a small (object) point cloud within a large and
complex (scene) point cloud is much harder. There are three main reasons
causing this difficulty:

• The algorithm converges to the nearest local optimum. That means
that if the start position for the alignment is not very close to the true
new position of the object, it will most probably just end up in a nearby
part of the scene that has a shape more similar to the object than its
direct neighborhood. Therefore, a global search approach is necessary.

• Most object shapes are not very unique. In particular, artificial objects
are dominated by planar surfaces, and scenes containing artificial ob-
jects and structures have lots of planes to which the object point cloud
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can be aligned. In general, any smooth surface with only modest cur-
vature can be aligned well with any other smooth surface. Using only
shape information is therefore insufficient for reliable matching.

• These two difficulties are aggravated by the fact that the initial object
hypotheses are often far from being correct. These point clouds usually
contain only a part of the actual object, and often enough points that
do not belong to it. This much more than the sensor noise (which of
course is also present) makes the matching of the initial hypothesis
with the moved object much harder.

Two measures are taken to overcome these difficulties. The first is a slight
extension of the original ICP algorithm to incorporate color information.
This is done by representing each point not only by its 3D position, but also
by a normalized RGB vector and a brightness value. For finding the nearest
neighbor of each point in the first step of each ICP iteration, the distance
between two points is defined as the weighted sum of their cartesian distance,
their distance in normalized RGB space, and difference in brightness.

The weighting allows to balance the relative importance of color and shape
matching. The weight of the color component should not be too small to
avoid mismatching due to similar shapes. On the other hand, if it is set too
high, the risk of mismatches due to similar color rises. It is set to such a
value that the maximal possible color and brightness distance is equivalent
to a cartesian distance of 10 cm. Empirically, values between 5 and 30 cm
produced reasonable behavior. The choice may also depend on the precision
of the 3D sensor and the point cloud density. By using both shape and color
information, the problem of mismatching in case of similar shapes, which
would otherwise occur frequently, can be reduced significantly. There are
extremely few publications on work in which color information has been
used to improve the classical ICP algorithm, one example is [Johnson and
Kang, 1999].
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The second measure is aimed at overcoming the local character of point
cloud matching with ICP. This is done by starting the alignment at several
different initial locations.

However, first the old object position is checked, i.e. ICP is started there. If
a good match is found, i.e. the resulting mean distance in cartesian and color
space is small, and the determined transformation indicates that the hypothe-
sis did not move significantly, this means that the object is most probably still
roughly at its old location. In that case the motion is insufficient to provide
robust information for segmentation, and the hypothesis is discarded.

If the determined transformation is large, or only a bad match was found,
the object has obviously moved. In this case, a global search is performed.
Even if a good match was found when starting ICP from the old object
position, this global search often leads to better results, and avoids mistakes
due to credibly-looking mismatches.

Thus, ICP is executed several times with different initial estimates of the
new object pose, and the resulting transformation that yields the best match
is kept. As the object may have been moved over a large distance, finding it
again requires an appropriate choice of the initial poses for ICP. To this end,
a color histogram of the object hypothesis is created. Regular windowing on
different scales is performed over the whole image to find regions with color
histograms that are similar to that of the object hypothesis. In each of these
locations, and at each location in different orientations, ICP is started. The
necessary number of different initial positions can be reduced by taking into
account the direction of the push, which must not be done in a too restrictive
manner as the caused object motion is rather unpredictable.

The best transformation returned by the differently initialized registration
attempts is refined by another execution of ICP on a reduced point set, where
all those points are left out that still have a large distance to their nearest
neighbor. If the hypothesis contains points that do not belong to the object
on which the main part of the hypothesis is lying, this last step leads to an
alignment that is not affected by them.
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3 Object segmentation by physical interaction

3.3.4 Verification of the object transformation

Some plausibility checks are performed on the determined transformation in
order to avoid using it if it can be detected to be unreliable or plainly wrong.
Probable mismatches are detected by checking the mean cartesian and color
distance of the object points to their nearest neighbor in the scene at the
new location. If this distance is too large, i.e. no good match was found,
the hypothesis is discarded. This happens in most cases when the initial
hypothesis did not correspond to a real object, and may also sometimes occur
when the object’s appearance changed too much due to rotation.

Another criterion is that at its new location, the object has to lie in a part
of the scene that has changed due to the push. If the new location is in an
unchanged part, even if the match seems good, the object hypothesis was
obviously aligned with something that was already there before. To give
an example, this occurs quite frequently when the objects are arranged on
a unicolored table. If there was an object hypothesis on a part of the table
surface and this region is changed because an object was moved there, the
hypothesis is usually matched to another part of the table. This leads to a very
good match quality, but can easily be recognized and discarded by noticing
that the new location of the hypothesis is in an unchanged region.

Finally, the estimated object motion has to be large enough to give reliable
information for segmentation. The threshold for the motion must be high
enough to allow certain distinction between actual motion and noise in the
visual perception. On the robot used in this work, given the precision of
the depth perception and a usual distance of 50-80 cm between camera and
object, a threshold of 3 cm for the object translation turned out to be definitely
safe. If all these criteria are met, the object hypothesis is considered to be
verified.

68



3.4 Improving the verified object hypotheses

3.4 Improving the verified object hypotheses

Those initial hypotheses for which a valid transformation has been deter-
mined do most likely belong to an actual object that has been moved by the
robot. However, most probably they do not cover the object completely, and
they often contain points that do not belong to the object.

3.4.1 Correction and extension of the hypotheses

Points that do not belong to the actual object are removed by checking each
point of the hypothesis: After applying the estimated object motion, a point
must match its nearest neighbor in the scene point cloud well with respect to
cartesian and color distance. It also has to lie in a region that changed due
to the push. If both of these criteria are met, the point is considered to be
verified, otherwise it is removed from the hypothesis.

Figure 3.9: Initial object hypotheses, and the confirmed hypothesis after pushing.

In this way, those points from the initial hypothesis that do not lie on the
same real-world object as the main part of the hypothesis are identified: If the
transformation of the object is applied to them, they will end up somewhere
near the new object location. As the other object they actually belong to
did not move, or moved differently, there will most probably be no good
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3 Object segmentation by physical interaction

correspondence for them in their new location: Either there is no scene point
at all nearby, or if there is, it has a different color.

The point may also end up in a region that was not changed at all by the
pushing action, and is thus discarded. The remaining hypothesis points ac-
cord with the overall transformation, and are thus considered verified. Figure
3.9 shows an example scene with many initial hypotheses, out of which one
is confirmed and corrected after being pushed.

However, as the initial hypotheses may only have covered a part of the
object, a confirmed hypothesis often does not cover the whole object, and
needs to be extended. To this end, more points are added that may belong
to the same object. All scene points that lie close to the verified points and
within the image region that changed are promising candidates for this. A
new point is added to the hypothesis if it fulfills four criteria: It has to be
close to one of the verified points, but not so close that it coincides with it.
The point must lie in a changed image region, and its old position before the
push must also have been in a changed region. This hypothetical old position
is calculated by applying the inverse of the transformation of the hypothesis
to the point.

The last check helps to filter out some of the points that belong to other
objects that were also moved. However, it is not very restrictive, and by
explicitly not checking that it has a good correspondence in the old scene
before the push, it is possible to add points that were not visible before, e.g.
because they were on the back side of the object.

By pushing the object again and repeating the steps described before, these
new candidate points can be verified or discarded, and new candidates can
be added. In this way, the hypothesis can grow in all directions and holes
can be filled. It is important that only the verified points are used to estimate
the object’s transformation, so that even by adding a lot of new candidate
points no harm can be done. However, allowing for new points to be too far
from the verified points may sometimes lead to some of them being verified
by chance, which may affect the estimation of the transformation in later
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iterations. Depending on the maximal permitted distance, the object size
and the quality of the initial hypothesis, it usually takes two or three pushes
until the whole object is contained in the hypothesis and thus segmented
completely.

3.4.2 Improving a hypothesis over several pushes

Usually, more than one object hypothesis is verified by the first push and the
subsequent analysis. This happens in particular when several actual objects
are moved, but also when more than one hypothesis is lying on the same
physical object. For the second push, the hypothesis containing the maximal
number of confirmed points is chosen. It is probably the most reliable one,
and if there are several hypotheses on the same object it is the one covering
the largest part of it.

In the default case considered in this work, the robot only wants to seg-
ment and learn one object at a time. Therefore, after the second push, the
hypotheses that did not move are discarded, and from the remaining ones
the one with the maximal number of confirmed points is selected for fur-
ther pushing. If the robot does indeed move several objects, all of them can
be segmented, but for the sake of simplicity only one is considered in the
descriptions here.

Figure 3.10 gives an example for the improvement of the segmentation
over several pushes. The first image shows the initial hypotheses, and each of
them is represented by crosses of the same color. The following images show
the confirmed hypotheses after one to five pushes. Here, the crosses denote
verified points, while the small dots indicate new points that were added to
the hypothesis as new candidates. After the first push, two hypotheses that
both cover a part of the bowl that was moved are verified. There is also a
small verified hypothesis on the edge of the bowl and a neighboring object
that moved slightly. After the second push, the hypotheses cover most of the
object, and after three pushes they cover it completely. As they now overlap
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3 Object segmentation by physical interaction

Figure 3.10: An example for the object segmentation by physical interaction: The initial
hypotheses, and the confirmed hypotheses after one to five pushes (row-wise from
left to right).
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3.4 Improving the verified object hypotheses

significantly, the smaller ones are discarded, and after four pushes only one
is left that covers the object completely with confirmed points.

When several objects are moved by a push, as long as they undergo dif-
ferent 3D transformations, they can be separated based on their different
motion. It may happen though that two touching objects move exactly alike,
in which case they are subsumed in one hypothesis. Most likely they are sep-
arated when pushed several times from different directions. Heuristics for
systematical pushing to this end have been proposed in [Chang et al., 2012]
and [Hermans et al., 2012], as described in section 2.2. When two objects
contained in one hypothesis are separated, the hypothesis will follow the ob-
ject that is matched better after the motion, which is usually the bigger one.
Pushing an object several times often reveals different sides of it, thus the
creation of a multi-view object descriptor is possible, although some sides
(in particular the bottom) will probably never be observed.

Figure 3.11 shows an interesting example where a hypothesis extends
over two objects, which are both moved by the first push. The first image
shows the initial object hypotheses, and the second image shows the verified
hypotheses after the first push, which has moved the cookie box and the tea
box in the bottom left part of the image. The hypotheses represented by blue,
turquoise and dark green crosses on the cookie box have been verified, as
well as the one represented by green crosses on the tea box and the yellow one
that stretches over both objects. The other initial hypotheses either did not
move or could not be relocalized after the push. As can be seen, most points
of the hypotheses that lie on only one of the two objects were verified, while
only some of the points belonging to the yellow hypothesis that stretches
over both were verified and most were discarded. Neighboring points in the
changed image regions were added to all hypotheses as new candidates.

After the third push, only the tea box has moved, so the hypotheses on the
cookie box are discarded. The yellow hypothesis that was stretching over
both objects is also discarded, because the larger part of it was lying on the
cookie box and therefore it did not move. The hypothesis represented by the
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Figure 3.11: An example for the object segmentation by physical interaction, where an initial
hypothesis covers two different objects.

green crosses on the tea box is extended significantly, as the new candidate
points added after the first push have been confirmed now.

In the fourth image, which shows the remaining verified hypothesis after
the third push, the whole tea box is covered by verified hypothesis points.
Around it are new candidate points which would be discarded though after
another push, so the hypothesis would not change significantly over further
pushes, except for parts of the object that would become visible or invisible
due to rotation.
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3.5 Object learning

After two to three pushes, the resulting object segmentations usually cover
the actual object almost completely and rarely contain any outliers (see eval-
uation in section 6.1.1). This knowledge about what part of the perceived
scene constitutes the object is an essential prerequisite for learning its vi-
sual appearance or other properties. An obvious use of the segmentation
is to learn a visual object descriptor that can be used for recognition and
localization.

Object recognition is arguably the most classical task of computer vision,
and has accordingly been subject to intensive scientific efforts over the last
decades. It is, however, still not a solved problems, and a recognition system
that works reliably on any kind of object in cluttered scenes or under occlu-
sion still does not exist. Two surveys that give an overview of commonly
used 2D and 3D descriptors for object recognition are [Mikolajczyk et al.,
2005] and [Guo et al., 2014]. Any kind of 2D or 3D descriptor can be used on
the segmentations obtained here, as both image and point cloud information
of the object are available.

In order to demonstrate the suitability of the segmentations for learning
visual object descriptors, a simple object localizer was implemented. The
descriptor is simply the point cloud of a confirmed object hypothesis that
was saved. The localization is performed in exactly the same way as the
relocalization of an object hypothesis after pushing: All image regions with
a similar color histogram are determined, and around each of them several
instances of ICP are started. The result with the smallest mean cartesian and
color distance is selected, and if the error is below a threshold, it is accepted
and the object is considered to be recognized and localized there.

As the object has been pushed several times, different confirmed hypothe-
ses are available that represent the object from different points of view. Using
all of them simultaneously for localization, and choosing the best match as

75



3 Object segmentation by physical interaction

the result, allows for multi-view object recognition. It also increases the reli-
ability of the recognizer, which is evaluated in section 6.1.3. For other types
of recognizers, it might be helpful to fuse the different segmentations using
the determined 3D transformations caused by the pushes.

Besides learning the visual appearance of the object, observing its motion
may also serve to study physical properties of the object like its mass distri-
bution or surface properties. Here, the forces and contacts perceived during
pushing should also be taken into account.

Finally, the shape of the explored object is a particularly important prop-
erty when more complex manipulation actions are intended. An approach
for extending the perceived partial object shape to make it usable for manip-
ulation planning is presented in the following chapter.
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4 Object shape completion

When an unknown object has been segmented, e.g. using the approach de-
scribed in the previous chapter, the robot knows which parts of the perceived
scene belong to the object, and thus visual and shape information about it is
available. However, although in the course of pushing it a few times different
sides of the object may have been revealed, it can usually not be observed
from all directions without being picked up.

Grasp planning, as well as most other robotic manipulation tasks, requires
or at least benefits greatly from information about the object shape. Most
traditional grasp planning algorithms require a complete and precise object
model, which in general is not available, and in particular when dealing
with unknown objects. In this chapter, a method is proposed for completing
shapes that are only partially known, which is a common situation when
a robot perceives a new object, and the typical result of the segmentation
presented in the previous chapter.

The approach presented in this thesis is an extension of the work of [Bohg
et al., 2011], and is similarly based on the assumption that most objects are
roughly symmetric. Therefore, symmetry plane candidates are determined
and rated in order to estimate the hidden parts of the object. The starting point
for this approach is a point cloud, i.e. a set of 3D points, of the new object
that the robot has segmented. In the worst case, the object has only been
observed from one perspective, which means that only its front side towards
the camera is available. Additionally, the point cloud of the scene around
the object is used. By finding possible supporting planes in this immediate
neighborhood, the search space for symmetry planes is restricted, and the
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4 Object shape completion

bottom part of the object is added. Gaps along the sides in the direction of
the view axis are closed by linear interpolation.

4.1 Symmetry plane hypotheses

The main assumption of this approach is that the object has a planar symme-
try, thus the main challenge is to find this symmetry based on the available
partial shape information. The perceived scene surrounding the object is used
to restrict the search space that needs to be sampled.

4.1.1 Supporting plane hypotheses

Unless it is held by someone, any object must be standing on some kind of
supporting structure. The robot is assumed to know the direction of gravity,
which can easily be achieved using an inertial measurement unit. It is as-
sumed that the structure supporting the object must be roughly perpendicular
to this vertical direction.

The immediate neighborhood of the object is searched for candidates for
the surface that the object is standing on. The neighborhood is obtained by
removing the object from the scene point cloud and considering only those
points that lie near it: With the object radius rob j being defined as half of the
maximal diameter of the object point cloud, all points that are at most 3 · rob j

away from the object center are considered to belong to its neighborhood.
In this neighborhood point cloud, the dominant planes are determined

using random sample consensus (RANSAC, [Fischler and Bolles, 1981], see
also subsection 3.1.2). The plane with maximal support is determined, and
removed from the point cloud. This is repeated until no more planes with a
minimal number of inliers are found.

From these planes, those which are reasonable candidates for being the
supporting surface of the object are selected. There are two criteria that have
to be met by each surface Si. Firstly, the surface should be roughly horizontal,
i.e. its normal ni should not differ too much from the direction of gravity g.
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4.1 Symmetry plane hypotheses

Consequently, the angle α = arccos
(
|ni·g|
|ni||g|

)
between ni and g should be

small. Secondly, as the object is assumed to be standing on it, there should
not be too many object points lying below the plane. For each point p j, its
projection p′j onto the surface is calculated. The sign of the scalar product
of (p j− p′j) and ni indicates whether the point is lying above or below the
plane. The rating of the surface candidate is the weighted sum of those two
cues: the ratio of object points below the surface, and the angle between its
normal and the direction of gravity. To limit the computational effort later,
only the 10 supporting plane hypotheses with the best rating are considered
in the subsequent steps.

4.1.2 Generation of symmetry plane candidates

Comparable to [Bohg et al., 2011], the symmetry plane of the object is as-
sumed to be perpendicular to the supporting surface, with the important
difference that in this work there are several hypotheses for that surface,
which removes the restriction that the object has to stand on an empty table.
For each supporting surface hypothesis, symmetry plane candidates are cre-
ated by uniform sampling. A plane can be defined by a support vector and
two orthogonal vectors that span it. Initially, the center of the object point
cloud Oob j is used as the support vector. With OP

ob j being the projection of
Oob j onto the supporting surface, the principal axis of OP

ob j which is more
orthogonal to the view direction is chosen as the first spanning vector, and
the normal of the supporting plane as the second one.

Starting from this initial symmetry plane candidate, more candidates are
generated by rotating and shifting the plane over regular intervals. The trans-
lation axis at is the projection of the view direction onto the supporting plane.
The translational sampling along this axis is restricted to an interval between
the 0.1 and 0.9 quantile of the object point cloud along that axis. For each
position, different orientations are sampled by rotating the plane around the
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normal of the supporting surface, with a maximal rotation of 45◦ in both
directions.

The required computational effort to analyze and rate all symmetry plane
hypotheses is proportional to the product of the number of supporting plane
hypotheses, translational samples per plane and rotational samples per trans-
lation. Thus, restricting the sampling space efficiently is the key to having a
high chance of good results within a reasonable computation time.

By testing different potential supporting surfaces, this extended approach
allows for a higher flexibility compared to [Bohg et al., 2011], for the price
of higher effort - or a lower sample density when keeping the effort similar.
In section 6.3, the effect of different sampling densities is evaluated.

4.1.3 Calculation of points mirrored on a plane

Given a symmetry plane candidate with support vector c and normal n, a
point pi is mirrored to the point p′i by adding twice the vector from the point
to its orthogonal projection onto the symmetry plane. With

pP
i = pi−

(pi− c) ·n
n ·n

n

being the orthogonal projection of pi, the mirrored point is

p′i = pi +2(pP
i − pi) = 2pP

i − pi = pi−2
(pi− c) ·n

n ·n
n

4.1.4 Rating of symmetry planes

In order to choose the best symmetry plane candidate, a rating of its apparent
plausibility is necessary. The rating is calculated based on the locations of the
points that are generated by mirroring the originally perceived object points
on the symmetry plane. A mirrored point falls in one of four categories,
depending on its position:
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1. If it is very close to an original point, this indicates that the symmetry
appears reasonable.

2. If it lies behind the original points, and thus would be invisible for
the camera, it may be a correct estimation that introduces information
about the back side of the object.

3. If, in contrast, the point lies besides or in front of the original object
points, it would be visible to the camera and, if it belongs to the ob-
ject, should be already included in the original point set. Therefore, it
indicates that the symmetry plane hypothesis may be incorrect.

4. If a mirrored point lies underneath the estimated supporting surface,
this also reduces the credibility of the candidate symmetry plane. (As
the symmetry planes are perpendicular to the supporting plane, these
points are the same for all symmetry hypotheses based on the same
supporting surface candidate. However, they are helpful as a rating
cue amongst symmetry hypotheses originating from different potential
supporting planes.)

Figure 4.1 shows the different kinds of positions of the mirrored points
with relation to the original object points (black). If the new points lie
amongst the original ones, they support the symmetry plane hypothesis. If
they lie behind them (gray), they give additional speculative information
about the object shape. If they are in front of or beside the original points
(red), they would have been visible before, hence indicating that the symme-
try plane might be incorrect. The same holds for points that lie under the
estimated supporting surface (orange).

To rate a symmetry hypothesis, each mirrored point p′i is classified accord-
ing to these categories. The first check is for the point to be above or below
the supporting plane - if it is below, its distance to the plane is added to the
rating with a negative weight. For the remaining points, it is first checked
whether they are beside the original point cloud when seen from the camera.
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Figure 4.1: Visualization of the different regions where the mirrored points may lie with
relation to the original object points.

This is done efficiently using a binary segmentation mask created by project-
ing the object point cloud into an image and closing it using morphological
operations. If the point is projected outside that segmentation area, it is be-
side the object, otherwise it may be in front of, behind, or coinciding with
the original points.

In any case, the nearest neighbor of p′i within the original point cloud is
determined. If p′i is projected within the segmentation mask, the distances of
p′i and its nearest neighbor from the camera are compared to decide whether
it lies in front of, within, or behind the original point cloud. If it lies in front
of or beside of it, the distance between p′i and its nearest neighbor is used
for the rating with a negative weight. If it lies within or behind the original
points, a positive value is added to the rating. These two positive weights
can be used to balance the preference of symmetry hypotheses that either
seem plausible for having many points that coincide with the original ones,
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or generate more speculative information about the back side of the object.
In this work, the same weight is given to both categories.

The overall rating of a symmetry plane candidate is the weighted sum
of the positive and negative ratings for all mirrored points. The rating is
normalized by the number of points, which makes no difference for choosing
the best symmetry plane but allows for comparison between different objects
(or different perceptions of the same object). The symmetry plane candidate
with the best rating and its corresponding supporting plane hypothesis are
selected, and all original points are mirrored on it.

4.2 Additional shape completion steps

When testing the shape completion using only mirroring, it turned out that
there were often significant holes left in the result. Usually, an object per-
ceived by the robot is seen well from the front and from the top. The back
side, and sometimes the rear part of the top when it is not flat, are recon-
structed by the mirrored points. But the sides, when they are roughly aligned
with the view direction, tend to be missing. This is due to the fact that with
stereo cameras as well as active depth sensors, little reliable depth data can
be perceived from these surfaces. Additionally, when an object is segmented,
the borders of the segmentation are often slightly imperfect.

The bottom of the object is usually invisible to the camera, except when
the object is bowl-shaped or open at the front. Little or no information can
be added here by mirroring on a symmetry plane that is perpendicular to
the supporting surface. As the goal is to estimate an object model that is as
complete and free of gaps as possible to allow e.g. grasp planning algorithms
to work with it, additional shape completion steps need to be performed in
order to overcome these two frequent deficits.
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4.2.1 Sides of the object

To define what are the sides of the object, its points are considered in the
camera coordinate system. Here, the (approximately) vertical edges are of
interest, i.e. the minimal and maximal values along the horizontal image
plane axis for any existing value on the vertical axis. As the object is given in
the form of a discrete point cloud and not as a filled spatial region, its outline
has to be approximated.

Figure 4.2: Determination of the sides of the object: The point cloud is divided horizontally,
and in each segment the left- and rightmost points are determined. The points with
similar horizontal positions form the edges.

First, all points are projected into the image plane, i.e. the two dimensions
perpendicular to the view direction. One possibility would be to use the
two-dimensional convex hull, but that would lead to great errors on concave
shapes. Instead, the point cloud is subdivided along the vertical direction to
get horizontal segments, in each of which the respective left- and rightmost
points are determined. The size of the subdivisions is crucial, as too large
intervals would eliminate details, while too small ones would carve into the
object when no point on the actual border lies within the segment.

To choose an appropriate size for the segments, the mean distance d̄ of a
point in the original object point cloud Pob j to its respective nearest neighbor
is determined:

d̄ =
1
|Pob j| ∑

pi∈Pob j

min
p j∈Pob j/{pi}

|pi− p j|.

The point cloud, projected into the camera plane, is subdivided vertically
into equal intervals between its highest and lowest point, such that the height
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of the subdivision segments is greater or equal to 2 · d̄. This gives a high
certainty that actual edge points are contained in each segment, while still
maintaining a reasonable degree of precision .

In each segment, the minimal and maximal points in horizontal direction
are determined. These points, and all points in the segment that are within a
distance of d̄ from the vertical line through the minimal or maximal point, are
considered to be part of the edge. Each of these edge points is connected with
its mirrored counterpart on the back side of the object. Along the straight line
connecting the original and the mirrored point, points are added in regular
intervals of length d̄.

Figure 4.2 visualizes this process: First, the point cloud is subdivided into
horizontal segments. Within each segment, the left- and rightmost points are
determined. They, and all points within the segment that are near the vertical
lines through them, are considered to be edge points. This is shown in the
central image for the bottom segment. In the right image, all resulting edge
points are marked in red.

4.2.2 Bottom of the object

The bottom part of an object that is standing on something else is usually not
visible, so it is a very common case that this part is missing in the perceived
object point cloud. The estimated supporting plane is used to add a bottom
part in the last step of the shape completion. The intuition is to estimate
the area where the object touches the supporting surface, and close it there.
Consequently, all points of the model generated so far, i.e. original as well as
mirrored and side points, are checked for being very close to the supporting
plane. The threshold here is set to 3 · d̄.

Those points which seem to be close to the bottom of the object are pro-
jected onto the supporting plane. Their 2-dimensional convex hull is calcu-
lated and filled with a regular grid of points at intervals of d̄. It is important
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: The steps of the object shape completion.

that only the low object points are used to to estimate the bottom area, be-
cause otherwise artificial planes would be created under object parts that
spread out in higher parts of the object, e.g. the handle of a cup.

There are still cases in which this approach would create a too large bottom
part. This occurs when the part of the object that is in contact with the
supporting surface is not convex, or even unconnected, e.g. when the object
has legs like a table. To limit this effect, all bottom points that would have
been visible from the camera are removed, similar to what was done in the
rating of the symmetry hypotheses in section 4.1.4.

Figure 4.3 shows the different steps of the shape completion algorithm.
4.3(a) is the camera image of the scene, in which the yellow mustard bottle
has been segmented. 4.3(b) shows the point cloud of the object (red) and
the part of the environment that is near it (gray). In 4.3(c), the estimated
supporting plane and the symmetry plane that is used for shape completion
are shown (both in yellow). It can be seen clearly that only the front side
of the object was perceived. 4.3(d) shows the new points in green that were

86



4.3 Grasp planning with the completed object shape

generated by mirroring of the original points on the symmetry plane. In
4.3(e) and 4.3(f), the final completed model is shown after adding the sides
(dark blue) and the bottom (light blue).

4.3 Grasp planning with the completed object
shape

The execution of a grasp in general comprises the motion of the arm, hand
and fingers of the robot from an initial pose to a configuration in which
the object is held firmly inside the hand. Collision-free motion planning in
such a high-dimensional space is challenging ([Vahrenkamp et al., 2012b]).
The most common approach is to separate the grasp and the motion planning:
Possible grasps for the object are planned offline in advance, and at execution
time one of them is selected considering the constraints given by the current
scene, i.e. the robot must be able to reach the desired grasp pose relative to
the object considering its kinematic limitations and possible obstacles (see
e.g. [Chen et al., 2013] or [Asfour et al., 2013]).

For the task of grasping a new, unknown object however, both grasp and
motion planning have to be performed after the object has been segmented
and its shape estimated. Thus, it makes sense to simultaneously plan both, as
proposed in [Vahrenkamp et al., 2012b], although of course the two planning
tasks could also be solved separately if two different components are used
for them.

The completed object shape that is generated as described in this chapter
is represented as a point cloud. The planner described in [Vahrenkamp et al.,
2012b] works on surface meshes, therefore the point cloud needs to be trian-
gulated before grasp planning can be performed. For this, the method from
[Marton et al., 2009] is used, and the triangle mesh that is created from the
point cloud is provided to the grasp planner, which generates an appropriate
grasp configuration. Finally, the planned grasp for the new object can be
executed by the robot, which is described in the following chapter.
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5 Visual collision detection for
reactive grasp correction

When a new object has been discovered and segmented, its shape estimated
and a grasp planned, this grasp finally has to be executed by the robot. It is in
this stage that the effects of possible errors or imprecisions in all the percep-
tion and planning components may manifest themselves. When dealing with
previously unknown objects as in this thesis, an additional source of errors is
that the knowledge about the shape of the object is noisy and in parts uncer-
tain. A grasp configuration that was planned based on an imperfect model
like the completed object shape generated in chapter 4 might not be entirely
correct given the real object shape.

Even when grasping known objects for which good grasp configurations
are know, imprecision of the perception or the motion execution itself may
cause problems, e.g. due to imprecise kinematic modeling or calibration.
Thus, there is a huge variety of possible causes that may lead to failure of
the grasp execution if it is performed without paying attention to arising
problems.

Besides collisions with the environment, which are not considered in this
work, the occurrence of a failure means that the hand of the robot does not
succeed in grasping the object. This may either mean that the hand misses
the object completely, or that parts of the hand collide with it before the
grasp pose is reached. While a complete miss would only occur in the case
of large errors, a premature collision of hand and object can happen easily,
in particular when there is a low tolerance margin e.g. because the object is
almost as big as the aperture of the hand.
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5 Visual collision detection for reactive grasp correction

Within this work, the focus is on detecting and reacting to such collisions
in the final part of the approach of the hand towards the object. The as-
sumption is that from a pregrasp pose somewhere near the object the hand
approaches the final grasping pose on a straight trajectory. Figure 5.1 shows
a schematic overview of the proposed grasp execution procedure. First, the
robot moves the hand to a pregrasp pose relative to the object. Then the
actual grasp pose is approached. During that critical last part of the approach,
when the hand is near the object, the robot continuously checks for collisions.
If a collision is detected, a corrective movement is executed and the grasp
pose is adapted. When the grasp pose is reached, the fingers are closed.

Move to pre-
grasp pose 

Move to 
grasp pose 

Close hand 
Pre-grasp 

pose reached 
Grasp pose 

reached 

Corrective 
movement 

Collision 
detected 

Figure 5.1: Schematic overview of grasping with collision detection and reactive corrections.

5.1 Visual collision detection

Collision detection is traditionally realized based on tactile or force sensors.
They are however somewhat limited, as they require sufficient force feedback
from the object to obtain significant sensor signals, which is not always the
case when dealing with light objects that can be moved easily. In this thesis,
a novel approach is proposed that complements these sensors by detecting
collisions visually when they cause the object to move.

The main idea is to detect the motion of the object that is caused by the
unintended collision with the hand of the robot. To this end, the hand is
tracked in the camera images and the optical flow next to it is observed for
irregularities. In contrast to [Bernabe et al., 2013], where the camera is static
and the object stands freely on a table, this approach is designed to work
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5.1 Visual collision detection

with the cameras of the robot itself that move during the grasp execution,
and makes no further assumptions about the scene except that the hand does
not collide with any other parts of the environment besides the object that is
being grasped.

5.1.1 Hand tracking

Visual tracking of the hand of the robot, and in particular the fingertips, is
necessary for the collision detection as well as for estimating the part that
caused the collision later. The tracking is realized based on a particle filter
([Isard and Blake, 1998]) which estimates the position, orientation and finger
configuration of the hand. The end effector of ARMAR-III ([Asfour et al.,
2006]) which is used here is a five-finger hand which is actuated pneumati-
cally, i.e. with air pressure. It has two degrees of freedom in each finger and
one in the palm. Tactile sensor pads are installed in each finger tip and the
palm, and a force-torque sensor in the wrist1.

A single-colored spherical marker is fixed at the wrist that allows a quick
and robust visual localization of the hand position, but does not give any
information about the orientation. Based on this marker and the fingertips,
which have a distinctive blue color, the hand is localized. The particle filter
estimates the position and orientation of the hand, and a reduced set of the
finger DoF, which results in a 12-dimensional state space. Thus, each particle
corresponds to a hypothetical hand configuration from that state space. The
particles are initialized with the position from the localization of the spherical
marker, the orientation from forward kinematics, and the measured finger
joint angles.

1 These sensors were used for reactive top-down grasping of unknown objects which was re-
alized by Julian Schill and is described in [Schiebener et al., 2012]. They are ignored in the
descriptions here, but for any practical application should definitely be used together with the
visual collision detection.
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5 Visual collision detection for reactive grasp correction

Figure 5.2: Localization of the hand of the robot, and in particular the fingertips, during grasp-
ing.

In each iteration of the particle filter algorithm, the particles are perturbed
by adding random Gaussian noise, and then the plausibility of the hand con-
figurations defined by the particles is evaluated based on the current camera
images. In the next iteration, particles are redrawn with a probability pro-
portional to their rating, the relative hand motion since the last iteration is
applied to them, random noise is added and they are evaluated again. Ro-
bustness of the tracking is enforced by only allowing particle configurations
that are within an empirically determined interval around the configuration
obtained from forward kinematics and joint value sensor readings.

The key component of the particle filter is the rating function which es-
timates for each particle si the conditional probability p(z|si) that the input
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z (the camera images) was caused by the hand configuration defined by si.
This probability is calculated based on five different cues, which are each
determined in both of the stereo camera images. The first cue is q1(si) = 1/d,
where d is the distance between the positions of the red spherical hand marker
in the estimation of the particle and in the camera images.

The other four cues are based on the blue fingertips: They are projected
into the images given the hand configuration of particle si. The cue q2(si)

gives a rating proportional to the number of pixels in the area covered by the
fingertips that have the correct color, and q3(si) rewards if a large part of the
area has the correct color. This is done to avoid that the rating becomes too
good if the projected fingertips are extremely small or large, which would
be the case if only one of the two criteria was used. The cue q4(si) checks
for intensity edges in the image that correspond to those of the projected
fingertips, and q5(si) rewards similar edge directions.

The conditional probability of a given particle si is then

p(z|si) = ϑ e∑
5
j=1 ω j q j(si)

where ϑ is a scaling factor and the ω j are weights for the different cues.

On each pair of stereo camera images, two iterations of simulated anneal-
ing (see [Kirkpatrick et al., 1983], [Deutscher et al., 2000]) are performed to
enhance the precision of the final localization result, which is the average of
all particles weighted with their probability.

5.1.2 Optical flow

Concurrently with the hand localization, the optical flow between the current
camera image and the one taken at the last iteration of the collision check is
calculated. The optical flow between two camera images estimates for each
pixel how it moves from one image to the other. It is calculated using the
algorithm proposed by [Farneback, 2003] which is implemented in OpenCV
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([Bradski, 2000]). The idea of the algorithm is to approximate the neighbor-
hood of each pixel by a quadratic function. If a quadratic function undergoes
a translation, the displacement can be determined in closed form. By itera-
tively determining these translations first on a coarse and then on increasingly
finer scales, larger displacements that exceed the direct neighborhood of the
pixel can also be determined and refined. The algorithm provides a dense
estimation of the optical flow between two images, although in larger mono-
tone image regions it does not return any values. This is not a problem in this
case, as only the image region around hand and object, which offers enough
visual information for the algorithm, is relevant for the collision detection.

5.1.3 Collision detection

The idea for the visual collision detection is inspired by the interactive seg-
mentation approach of [Metta and Fitzpatrick, 2003], where the moment of
the collision between robot arm and object is recognized by the fact that an
area of significant optical flow appears next to the hand. However, while in
their case the camera is static, the cameras used here are mounted on the
robot itself. Therefore, they are moving with the robot during the grasp exe-
cution, and consequently there is nonzero optical flow throughout the whole
image. This poses the more general problem of discovering if an object next
to the hand moves in a way that is inconsistent with the rest of the scene.
It is also important to note that for the static part of the scene, its projected
motion is not equal throughout the image but depends on the distance to the
camera.

To overcome this problem, the pixels of the camera image are clustered by
their optical flow values, i.e. their 2D motion vector from one frame to the
next. This is done using a variant of k-means that automatically determines
an appropriate number of clusters given a parameter that balances the number
of clusters and their intraclass variance ([Pelleg and Moore, 2000]). The idea
is to detect if there is a cluster of similar optical flow next to the hand which is
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different from the optical flow in the rest of the scene, which would indicate
that an object is being moved by the hand.

The image area that is checked for such an outstanding cluster is deter-
mined by taking the hand position, adding a translation into the direction into
which the hand is currently moving, and projecting this point into the image.
A quadratic area around that point which has roughly the size of the object
is then analyzed2. For each cluster of similar optical flow ci, the number ni

of pixels belonging to it in the whole image is determined, as well as the
number ai of pixels belonging to it in the area in front of the hand. If for
one of the clusters the ratio ai

ni
is more than 0.5, i.e. most of the pixels of the

cluster occur inside that small area, this is a strong indication that this unique
motion has been caused by an object that is being moved by the robot hand.

It is very probable (yet not certain) that the object will move in a similar
way as the hand of the robot and parts of its arm. Therefore, the image area
covered by the hand and the arm, which is determined based on the results
of the hand tracking, is not taken into account when the values ni and ai are
determined.

Figure 5.3 visualizes the optical flow, its clustering and the relevant image
regions just before and during a collision. The left column shows the scene
from the cameras of the robot immediately before and after the collision.
The central column visualizes the optical flow, the right column the clusters
of similar optical flow, where each cluster has been marked with a distinct
color. The darker area is occupied by hand and arm and therefore ignored.
The white box marks the area next to the hand where a possible collision
is expected to occur. If there is a cluster of optical flow that exists mostly
within this area but not outside of it, this observation indicates that the hand
collided with an object and caused it to move.

Due to the restricted image area in which collisions are expected to happen,
individual motion in the background (which most of the time moves as a

2 The size of the object in the image can be estimated from its maximal extent and the distance
to the camera.
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Figure 5.3: Visual collision detection immediately before and after the moment when the hand
of the robot touches the object.

whole due to the motion of the camera) can theoretically cause false collision
detections, but only when it occurs within the image area next to the hand in
the direction into which it is moving as described above.

5.2 Corrective reaction

When the robot detects an unintended collision during the grasp execution,
it should react in a way that allows to successfully complete the grasp. Opti-
mally, the robot would have all relevant information about shape and pose of
the hand and the object and could just re-plan a collision-free grasp trajectory.
But in practice such comprehensive information is not available, otherwise
the collision would not have occurred in the first place. Thus, robust heuris-
tics are needed that can deal with incomplete and uncertain information and
create a reaction that has a good chance of correcting the execution error that
the robot committed.
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5.2 Corrective reaction

5.2.1 Collision localization

One piece of information that is necessary for a reasonable corrective reac-
tion is which part of the hand collided with the object. A random change of
the hand pose may sometimes be successful, but as shown in the experiments
in section 6.3 the informed reaction strategies are clearly superior to random
modifications of the grasp.

The information which part of the hand touched the object is immediately
available when using tactile sensors, but if the collision was detected visu-
ally it has to be determined in another way. Although this depends on the
kind of hand that is used, it can be assumed that for a majority of grasping
motions the fingers and in particular the fingertips are the primary causer of
premature collisions. In the case of the conducted experiments, collisions
are virtually always caused by the fingertips. Therefore, their positions are
obtained from the hand localization, and the fingertip which is closest to the
object is determined. This finger is considered to have caused the collision.

5.2.2 Reaction strategies

Different reaction strategies to correct the hand pose in the case of a pre-
mature collision were implemented and evaluated in this thesis. They are
however limited to modifying the position and orientation of the whole hand,
although in general there are cases in which it would be necessary to correct
the configuration of individual fingers.

The general reaction scheme is the same for all proposed strategies: When
a collision is detected, the hand retreats 2 cm into the direction that it came
from with a straight motion to avoid disturbing the object any more. A correc-
tive offset for the hand pose is calculated according to the respective strategy.
The hand retreats another 2 cm during which half of the corrective offset is
already applied, to make sure that the reaction has already taken effect be-
fore approaching the object again. The corrective offset is then permanently
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5 Visual collision detection for reactive grasp correction

applied to the grasp pose definition. From that point on, the robot moves
towards the intended grasping pose again.

If the robot collides with the object again, another corrective reaction takes
places. Thus, the corrective offsets add up, and the robot repeatedly tries to
grasp and corrects the hand pose as often as necessary until the grasp is
successful. In practice it would probably make sense that if the grasp does
not succeed after a certain number of corrections, a totally different grasp is
planned.

Within this reaction scheme, the key to a helpful correction is to determine
an appropriate corrective offset. As a baseline for the experiments, a strategy
was implemented where the orientation of the hand is modified by a small
random rotation. Such a purely exploratory approach would probably be
the only possibility if there were no further information available about the
collision, and there is a certain chance that the grasp will eventually succeed
after one or more random modifications of the hand pose.

Figure 5.4: Depiction of the two basic reaction strategies: By translation or rotation, the collid-
ing part is moved away from the object.

However, as the information which finger collided with the object is avail-
able, a more constructive correction offset can be determined. Two basic
kinds of motion are useful to avoid another collision when approaching the
object again: The first is to translate the hand into the direction of the fin-
ger that caused the collision, thus aligning the palm with the closest part of
the object. The translation direction is from the hand center to the colliding
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finger, and perpendicular to the approach direction. The second possibility
is to rotate the hand such that the colliding finger is turned away from the
object. In the case of a hand where the thumb opposes the other fingers, or
a simple gripper, the rotation would be around the axis that is perpendicular
to the approach direction and to the direction from the thumb to the other
fingers. This is depicted schematically in Figure 5.4. Of course, the two basic
motions can also be blended. Both motions and a balanced combination of
them were implemented in this thesis, and a comparative evaluation can be
found in section 6.3.

In the case of the hand of ARMAR-III, the thumb opposes the four other
fingers, therefore it is sufficient to distinguish whether the thumb or one
of the other fingers collided with the object. These results can directly be
transferred to simple grippers or to precision grasps with two fingers. For
more general hand configurations the reaction strategies have to be adapted
to the individual hand geometry following the above principles.
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6 Evaluation

All evaluations were performed using the humanoid robot ARMAR-III ([As-
four et al., 2006]). It is equipped with stereo cameras that have a resolution
of 640×480 pixels, and has two 7 DoF arms with anthropomorphic hands.
All experiments were performed using the images from the cameras of the
robot.

For the segmentation, a point cloud was generated using dense stereo
matching ([Hirschmuller, 2008]), and the results of the segmentation are
used when evaluating the object shape completion. The algorithms were also
tested with an active Asus Xtion camera that immediately produces colored
point clouds (RGBD data) which are a bit more accurate than those obtained
from stereo matching, but no significant differences in the results of the
segmentation or the shape completion were found.

The objects used for the evaluation are from the YCB object and model
set ([Calli et al., 2015]). Out of the overall set of 75 objects, 18 cannot be
perceived well enough by the available cameras because they are transparent,
reflective or too small. Another 5 objects are deformable, and 4 have the
same shape but different sizes. Therefore, the experiments were performed
using the remaining 49 unique and well perceivable objects. In the following
sections, the three contributions of the thesis are evaluated in the order as they
were described before: First the object segmentation by physical interaction,
then the object shape completion based on those segmentations, and finally
the visual collision detection for reactive grasp correction.
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6.1 Object segmentation by physical
interaction

The proposed method for object segmentation by physical interaction is eval-
uated in challenging scenes where objects are stacked in random heaps, i.e.
they may touch each other, lay on top of each other, and no prior knowledge
about them or the background is available. Each object is pushed 5 times,
resulting in segmentations in the form of the 3D points belonging to the
verified object hypothesis.

6.1.1 Evaluation of the segmentation quality

To evaluate the quality of the segmentations, they are compared to a man-
ually annotated ground truth, where in the camera images those pixels are
marked that belong to the actual object. To allow a comparison, the points
belonging to the object hypothesis are projected back into the images. There,
an image region for the segmentation is generated by marking the projected
points as white pixels in an otherwise black image, applying a Gaussian
filter to enlarge them, and binarizing the resulting greyscale image with a
threshold. The overlap of this segmented image region with the ground truth
is then used to rate the quality of the segmentation. For the segmentation,
only the confirmed hypothesis points are taken into account, but not the new
candidates.

Figure 6.1: Segmentation of the yellow mustard bottle in the left picture compared to the
ground truth after one to five pushes.
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6.1 Object segmentation by physical interaction

Figure 6.1 shows an example for this evaluation. The yellow mustard
bottle in the left picture is segmented, and the results after one to five pushes
compared to the ground truth. The green areas are true positives, i.e. correctly
segmented regions, the red areas are false positives, and the yellow areas are
false negatives, i.e. object parts that are not covered by the segmentation.
As can be seen, after the first push, only a part of the object is covered by
the segmentation. This is because the initial hypothesis only covered that
part, so only in that area there can be confirmed hypothesis points. However,
after the first push, new candidates are generated on the rest of the object,
which are confirmed after the second push. After that, the object is mostly
covered with confirmed points. Consequently, the segmentation after two
pushes is already much better than after one. As the last three images show,
the segmentation and the ground truth conform almost completely after three
to five pushes.

The typically used values to quantify segmentation quality are precision

and recall. Precision is the ratio of the number of true positives to the overall
number of true and false positives, thus it indicates how reliable the algorithm
is when claiming that a point belongs to the object. Recall is the ratio of the
number of true positives to the number of true positives and false negatives,
i.e. the overall number of points belonging to the object, so it indicates the
total coverage ratio of the object by the segmentation.

In this evaluation, these values give a measure of the reliability of the
points resulting from the segmentation, and of how completely the object is
covered by them. The focus can to some degree be shifted between these
two criteria. The confirmed 3D points of the hypothesis are projected into
the image, where pixels are included in the segmentation depending on their
distance to the projections of the hypothesis points. When only accepting
exactly those pixels onto which the points are projected, a high precision is
achieved, but many pixels in between are discarded which results in a low
recall. In contrast, when the points are extended with a Gaussian filter and
a low threshold is used for binarization, there will be no holes within the
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object region, but it may also stretch out further than the actual size of the
object. This would result in a high recall, but a low precision.

Figure 6.2 shows the precision and recall values after one, two and three
pushes depending on the binarization threshold. As expected, the precision
increases with the threshold, while the recall decreases as the binarization
gets more restrictive. An appropriate threshold should balance these two
values depending on their relative importance. The Fβ score is a quality
measure that incorporates precision and recall into one value, with β as a
weighting factor:

Fβ = (1+β
2) · precision · recall

(β 2 · precision)+ recall

With β = 1, similar weight is given to both measures, and the F1 score equals
their harmonic mean:

F1 = 2 · precision · recall
precision+ recall
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Figure 6.2: Precision and recall values of the segmentations after one, two and three pushes,
depending on the binarization threshold.
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6.1 Object segmentation by physical interaction

Figure 6.3 shows the mean F1 scores over the whole test set depending on
the binarization threshold, and table 6.1 gives the F1 scores together with their
standard deviations when using the optimal threshold. It can be seen that after
one push, the score is rather moderate and has a high variance. This is due to
the fact that the initial object hypotheses may be anything between perfect
and very bad, and only the correct points contained in them are confirmed
after the first push. This means that the recall value here can be very low
if the initial hypothesis only covered a small part of the object. However,
new candidate points are added after the first push and can be verified after
the second push. Consequently, the rating significantly improves after two
pushes, and the small standard deviation shows that these good results are
consistent over the whole test set (see also Figure 6.1).

There is another small improvement after the third push, but the fourth and
fifth usually do not improve the results further. They may, however, unveil
parts of the object that were not visible before and therefore be helpful for
learning multiview object descriptors. The appearance of previously invisible
object parts after each push is also the reason why the segmentations can
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Figure 6.3: The mean F1 scores of the interactive segmentation results after one to five pushes,
depending on the binarization threshold.
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Table 6.1: The mean F1 scores for the interactive segmentation and the respective standard
deviations over the complete test set, after one to five pushes.

1 push 2 pushes 3 pushes 4 pushes 5 pushes

0.575 ±0.279 0.829 ±0.059 0.869 ±0.045 0.861 ±0.061 0.862 ±0.085

usually not reach a perfect score, because there can be no confirmed points
on newly appearing object parts.

It is also interesting to note that after the first push, when often only a part
of the object is covered, the segmentation rating would profit from a rather
low threshold that essentially just enlarges the segments. In contrast, the bet-
ter segmentations resulting from two or more more pushes consistently have
a higher optimal threshold that restricts the segmented region to the areas
that are very close to confirmed points. As can be seen from Figure 6.2, the
recall normally does not reach 1 for the reason mentioned above, but for strict
thresholds the average precision is almost perfect, which means that there
are extremely few and often no false positives at all in the segmentations.

6.1.2 Comparison to a state-of-the-art segmentation
algorithm

In order to compare the results of the proposed approach to a segmentation
algorithm that does not leverage physical interaction, the same evaluation
was performed with the Locally Convex Connected Patches (LCCP) algo-
rithm presented in [Stein et al., 2014] that is also described in section 2.1.5.
It works on point clouds and segments them into parts that are connected by
a convex path of small surface patches. Thus it is comparably well suited
for the scenes considered here, as it does not rely exclusively on visual cues
which are very ambiguous in complex arrangements of many objects that
may or may not be textured, but also takes geometric information into ac-
count.
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Figure 6.4: Examples of the results of the object segmentation by physical interaction: The
initial hypotheses, and the confirmed hypotheses after one to five pushes.
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Similar to the algorithm presented in this thesis, the resulting segments
generated by LCCP are point clouds. As described above, the points are
projected into the camera image, spread by using a Gaussian filter, and a
segmentation mask is generated by binarization of the result. As the LCCP
algorithm segments the scene into several convexly connected regions, the
one with the best overlap with the ground truth is selected and used for the
evaluation.

A member of the group that developed the algorithm set its parameters
appropriately for the recorded scenes from the evaluation of the interactive
segmentation. It turned out that one parameter needs to be set to different
values, depending on the size of the object that is to be segmented. To ac-
commodate for that, the algorithm is run with two different values for that
parameter. In each scene, the segment with the best overlap with the ground
truth is determined and used to calculate the rating.

The precision and recall are determined using different binarization thresh-
olds for the Gaussian-filtered segmentation mask, and the F1 score is calcu-
lated. In Figure 6.5 it is plotted depending on the binarization threshold,
together with its standard deviation. For comparison, the F1 score for the
interactive segmentation presented in this thesis is also plotted, using the
results after three pushes.

The mean score for LCCP at the optimal threshold value is 0.573 with a
standard deviation of 0.265. This result is much worse than the 0.869(±0.045)
of the interactive segmentation, but the high variance also shows that the
average has a very limited significance here. LCCP does not normally find
mediocre segmentations - on the contrary, when the object can be segmented
correctly, the precision as well as recall are usually very good. But there
are also instances where LCCP completely fails to create a segment that
corresponds to the object. This happens when e.g. it is positioned next to
one or more other objects from which it can not be separated based on the
applied geometric criteria. When, in contrast, the object is standing apart
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Figure 6.5: The F1 scores of LCCP and the interactive segmentation after three pushes depend-
ing on the binarization threshold, together with their respective standard deviations.

from the other objects in the scene, the segmentation results are usually very
good.

Over the whole test set, the interactive segmentation clearly outperforms
LCCP. The latter tends to give slightly better results in the instances in which
it is successful though: The objects are often covered more completely, i.e.
the recall is a bit higher, as LCCP is not leaving out the previously unseen
parts of the objects where the interactive segmentation can not have con-
firmed points yet. On the other side, it often fails when an object is in touch
with other objects and does not significantly stick out of the scene. While the
segments created by LCCP are rather speculative, the interactive segmenta-
tion returns object hypotheses that are verified and grounded by observation
of the effects of physical interaction.
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6.1.3 Evaluation of the object learning

To evaluate how suitable the obtained segmentations are for learning visual
object descriptors, a simple object localizer was implemented. The segmenta-
tion results, i.e. the confirmed hypothesis point clouds, are saved. To localize
an object, image regions with a similar color histogram are determined, and
in them ICP is used to align the learned object point cloud with the scene. If
the best match is below an error threshold, the localization is accepted.
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Figure 6.6: Recognition performance when using the segmentation results after one to five
pushes.

For each object, recognition was attempted in five scenes that contain the
object and five that do not. Figure 6.6 shows the F1 score depending on the
error threshold for accepting a match as a recognition. A smaller threshold
tends to cause higher precision but lower recall than a high one. As can be
seen, the results when using the segmentations after one push are rather bad,
probably because at this point the hypotheses often cover only a part of the
actual object. After two or more pushes, the segmentations usually cover
the object well, and correspondingly the recognition performance increases
significantly. Interestingly, there seems to be no improvement when using
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6.1 Object segmentation by physical interaction

the descriptor after a higher number of pushes. Although the segmentation
quality is a bit higher after three or more pushes than after two, it does not
seem to make a big difference for the recognition performance. Only the
range of thresholds where the best results are achieved seems to be a bit
wider, which may indicate a higher reliability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25

F
1 

sc
or

e

tolerance threshold

1 view
2 views
3 views
4 views
5 views

Figure 6.7: Recognition performance when using the best match of some or all of the learned
descriptors per object.

Pushing the object several times allows to generate descriptors for multiple
views of it. To make use of this, the recognition tries to localize an object
using some or all of the available descriptors of it. The best match, i.e. the
one with the smallest matching error, is used as the result. Figure 6.7 shows
the recognition performance when using the first one, two, three, four, or
all five learned views of the object. When using only the first one, there is
obviously no difference, but when using the best result of several ones, the
recognition performance increases.

In contrast to using single descriptors, it keeps improving with the num-
ber of used views. This was to be expected, as trying out multiple views
increases the chance that one of them matches the object in the perceived
scene well. When using four or five views, the recognition performance is
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clearly superior to that when using only a single view, and the F1 score gets
above 0.95 for a robust threshold range.

6.2 Object shape completion

The segmentation results obtained after 3 pushes were used to test and eval-
uate the approach for symmetry-based object shape completion. Based on
the point cloud obtained from the segmentation, the shape completion is per-
formed, and the results are compared to the ground truth, which is available
in form of the scanned models of the YCB object and model set.

6.2.1 Quality measures

To quantify the similarity of the completed object shape with the model, they
first need to be aligned. The model is loaded as a point cloud and matched
with the completed point cloud using the Iterative Closest Point (ICP) algo-
rithm ([Besl and McKay, 1992]). As this algorithm finds a local optimum, it
is instantiated multiple times with different initial relative positionings: The
two point clouds are placed so that their centers are in the same location, and
one of them is rotated to all six possible orientations that can be reached by
rotations of 180◦ around the three coordinate axes. The ICP result with the
smallest mean error is selected, thus avoiding to use an alignment resulting
from a local minimum far off the correct matching of the two point clouds.
However, it is possible that the optimal alignment is not found. Therefore,
the ratings for the completed point clouds may sometimes be worse than they
would be with the optimal alignment, and thus underestimate the quality of
the shape estimation.

One measure of shape similarity is the mean distance of each point in
one point cloud to its nearest neighbor in the other point cloud. This score
is calculated in both directions, i.e. the nearest neighbor for each point of
the completed shape is found in the ground truth model, and vice versa, to
make sure that the rating penalizes missing or added object parts. This gives
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a measure of the distance between estimated and real shape, however it is
also affected by the pixel density and the precision of the camera. The results
for this measure are shown in the top part of Figure 6.8.
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Figure 6.8: Top: Mean distances of points in the completed object shape to their nearest neigh-
bors in the ground truth model, and vice versa. Bottom: Overlap of the silhouettes
of completed model and ground truth.

Therefore, another measure is calculated that is intended to quantify the
shape similarity in a way that gives a robust and dimensionless correlation
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value. The completed shape and the model are projected into an image, thus
getting a binary silhouette. The projection is performed along all three coor-
dinate axes. Two measures for the silhouette similarity are calculated: The
zero-mean normalized cross correlation (ZNCC), and the ratio of the size
of the region that is occupied by both to the size of the region occupied by
at least one of the two silhouettes, i.e. |S1∩S2|

|S1∪S2|
. Both measures give a value

in [0,1] that is 1 for perfect correspondence and 0 for none. The average of
these values for the three projections from different directions is used in the
statistics. The results are shown in the bottom part of Figure 6.8.

6.2.2 Quality depending on the sampling density

The main tradeoff to be made in that approach is between the required com-
putation time and the quality of the resulting completed object shape. With
|O| being the number of points in the original object segmentation, the ex-
pected effort is in Θ(|O| log |O|) for the nearest neighbor search, and all other
calculations are linear in |O|. The objects are segmented at a resolution of
320×240, and the original object point clouds contain between 100 and 900
points, on average 312. The resulting completed models contain on average
1251 points, which is about 4 times the initial size.

As downsampling the object point clouds would cause a significant loss
of information, the most effective factor with which the computational effort
can be influenced is the number of samples for the position and orientation of
symmetry plane candidates. The number of potential supporting planes is set
to be 10, but the number of positions and orientations of the symmetry plane
candidates that are tested for each of the supporting surfaces is varied. Figure
6.8 shows the dependency of the shape quality on the invested computation
time. The results indicate that the quality reaches saturation when more than
one second is spent testing symmetry plane candidates. This corresponds to
a sampling density of 20 different positions per supporting surface and 10
different orientations per position, i.e. 2000 different poses in total.
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Table 6.2: Average computation times for the different steps of the shape completion algorithm
(in ms).

find supporting
planes

generate and evaluate
symmetry planes

add sides and
bottom

total

150.3 ±45.5 535.4 ±168.3 144.4 ±82.9 830.1 ±425.0

Table 6.2 shows the computation times for the different steps of the shape
completion using this sampling density. The values are averages over the
whole test set, together with their respective standard deviations. The com-
putationally intensive steps are parallelized, and the experiments are run on
a PC with an Intel Core i7 CPU with 8 virtual (4 physical) cores at 3.6 GHz.
There is potential for some more speedup, but the required time is acceptable
for the intended use as a prerequisite to grasp planning.

6.2.3 Discussion of the results

The results show that when sufficient computation time is invested, the shape
completion creates estimations that robustly come close to the real object
shapes. While it is hard to judge the absolute similarity between estimated
and real shape given the average point distances, the silhouette-based mea-
surements indicate that the concordance is high, but not perfect. The fact that
the mean distance of a point in the ground truth model to its nearest neigh-
bor in the completed shape is higher than that of a point in the completed
shape to the model indicates that the estimations tend to lack parts of the real
objects.

By visually inspecting the results, two reasons for this can be identified:
One is that already in the segmentation the visible side of the object is not
always covered completely. This error is propagated through the shape com-
pletion, and consequently the resulting shape estimation will be smaller than
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Figure 6.9: Original point clouds (seen from front and side) and completed shapes for a spray
bottle, a cylindrical and a box-shaped object.
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the actual object, missing the parts whose visible side was not included in
the segmentation.

Another case where the approach tends to underestimate the volume is
when dealing with rounded objects. Here, depth cameras as well as stereo
cameras tend to give no values at the edges of the object where its curvature
causes the surface to be nearly parallel to the view axis. In those cases, the
shape completion method connects front and mirrored back sides by straight
lines, which comes close to the real shape, but omits the bulge on the side.
A good example to see this is the cylindrical coffee package in the second
row of Figure 6.9. Here, the first and second column show the original point
cloud, the third and fourth show the result. The original points are red, those
generated by mirroring on the symmetry plane are green, the sides are dark
blue and the bottom points are light blue.

Overall, the evaluation results as well as the subjective impression indicate
that the shape resulting estimations approximate the real objects reliably. The
mean error never exceeds 30mm, which is too much though to guarantee that
grasps planned on these shapes can be executed successfully. The approach
is robust to the objects being placed in nontrivial environments and on tilted
supporting surfaces, which is an important improvement compared to pre-
vious work that only considers objects in isolation from their environment.
However, the evaluation benefits from the fact that the objects in the test set
were all at least roughly symmetrical. For a totally asymmetrical object, the
shape completion error might be significantly larger.

In the evaluation, only the most problematic case was considered, in which
the object has only been seen from a single point of view. In practice, a robot
will usually be able to move its cameras and thus perceive more than only
one side of the object, or when using the segmentation presented here fuse
the different views obtained during pushing. Any additional points on the
sides other than the front side of the object will make the estimation of the
symmetry plane significantly easier and more stable. When different points
of view are taken into account for the visibility criteria in the rating of the
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symmetry plane hypotheses, that rating becomes more informed and thus
more robust. The potential volume of misestimations of the back side can
then effectively be restricted to the remaining region that can not be seen
from any of the points of view.

6.3 Visual collision detection for reactive
grasp correction

The visual collision detection is first evaluated in isolation in order to deter-
mine its sensitivity, and then as part of a reactive correction strategy that is
used during grasping with the robot ARMAR-III.

6.3.1 Sensitivity of the collision detection

The first test aims at quantifying the sensitivity of the visual collision de-
tection in a very controlled setup. An object was moved manually over a
fixed distance, while the robot hand is close to it, and therefore the detection
should classify this motion as the result of a collision.

For each distance, the object was moved 25 times, and the respective de-
tection rates are given in Table 6.3. Even if the object was shifted only by 2
mm, this was already detected most of the times, and when the translation
was 5 mm or more the detection rate was clearly over 90%.

Table 6.3: Collision detection rate depending on the distance that the object has moved.

2 mm 5 mm 10 mm

76 % 92 % 96 %

Although these results suggest that a very small motion is sufficient to
detect a collision between hand and object, in the execution on the real robot
the objects were usually pushed about 1-4 cm. The two reasons for that are
that the detection algorithm runs only at 2-3 frames per second on a standard
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PC due to the relatively high computational intensity of hand localization,
optical flow calculation, and clustering. More importantly, when a collision is
detected, it takes some time until the hand of the robot actually stops moving
forward.

Table 6.4: Collision detection rate depending on the angle between image plane and direction
of movement (over a distance of 5 mm).

0◦ 45◦ 70◦ 90◦

92 % 96 % 84 % 72 %

As the visual collision detection is based on optical flow, it is important to
examine whether it is able to detect object motion that occurs in the direction
perpendicular to the image plane. While motions within the two dimensions
spanned by the image plane create significant optical flow, a motion straight
away from the camera only causes the object to shrink in the image. There-
fore, in the second experiment, the object is moved by 5 mm in different
angles relative to the image plane.

The results can be found in Table 6.4. At 0◦ and 45◦, there seems to be
no difference. At an angle of around 70◦, the detection rate drops slightly to
84%. At 90◦, which is a motion exactly into the depth direction, the detection
rate is still 72%. In practice however, 70◦ is the biggest angle to the image
plane that can realistically be expected to occur. Usually, objects are placed
in locations that are below the cameras of the robot, therefore a horizontal
motion of the object e.g. on a table will never be exactly perpendicular to the
image plane.

6.3.2 Performance of the different reaction strategies

Finally, the performance of the overall framework for reactive grasp cor-
rection based on visual collision detection was tested. In order to avoid
distortion of the results by the effects of other algorithms, the grasping was
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performed on known, freestanding objects. The detection does however not
require knowledge about the objects apart from their approximate size, and
makes no assumptions about the background. It can therefore be applied in
the same manner when grasping newly discovered and segmented objects.

Five different test objects were used, and for each of them a grasp was
defined manually using a graphical tool that allows to position a model of the
robot hand relative to a model of the object. These grasp definitions looked
correct in their visualization, but their execution on the robot often failed due
to imprecisions in perception and execution.
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Figure 6.10: Percentage of successful grasps after a certain number of correction movements,
depending on the applied strategy.

The aim of the experiment was to examine how well the different reaction
strategies proposed in section 5.2.2 would be able to correct a failing grasp
execution. Every reaction strategy was evaluated by placing each of the five
objects at five different reachable poses in front of the robot. Grasp attempts
that were immediately successful were ignored and repeated, so every strat-
egy was tested with 25 grasps during which at least one collision with the
object occurred. During grasp execution, visual servoing was employed to
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control the hand motion, i.e. both object and hand were localized visually to
reduce the influence of imprecisions in the kinematic model of the robot.

Figure 6.10 depicts the results of these tests. It shows how many of the
grasping attempts had succeeded after a given maximal number of correc-
tions. The baseline strategy, which modifies the hand pose by a random rota-
tion of 25◦ after a collision, performed rather badly, as was to be expected.
In only one case a single correction movement lead to a successful grasp,
and another attempt succeeded after three and four corrections respectively.

The proposed strategies that take into account which finger caused the col-
lision performed significantly better than the uninformed random reaction.
With the strategy which modifies the hand position by a translation of 25 mm
towards the finger that caused the collision, the robot managed to success-
fully grasp the object after one correction in 16% of the cases, and in another
24% two corrective movements are sufficient. In 32% of the attempts, three
corrections were necessary. The overall success rate after at most four cor-
rections was 88%, which is already quite an achievement regarding the fact
that without the reactions all those grasps would have failed. In two of the
remaining three cases the object was still grasped after further correction
movements, but in one case it was finally pushed out of reach of the robot.

However, the two reactive strategies which modify the orientation of the
hand turned out to be even more effective. One modifies only the orientation
by 25◦ to turn the colliding finger away from the object, the other changes
the orientation by 15◦ and the position by 10 mm. With both strategies, the
robot managed to grasp the object after one correction in about 60% of the
attempts, and had an overall success rate of around 90% after one or two and
100% after at most three corrective movements.

The reason why the strategies that apply a rotational correction are more
effective than the one that corrects only the position may lie in the way
the arm movement during grasping is controlled on ARMAR-III: Visual
servoing is used, but only the position of the hand is visually corrected, while
its orientation is obtained from the forward kinematics of the robot. Thus, the
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orientation error during execution exceeds the position error. Furthermore,
when localizing an object, its position is usually determined more reliably
than its orientation. Therefore, it is entirely possible that on other robotic
platforms, or when the visual servoing can also correct the hand orientation,
the differences in the performance of the three strategies might be smaller.
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In this thesis, visual perception and the manipulation skills of humanoid
robots were integrated to realize novel methods that enhance the ability of
robots to correctly perceive new, unknown objects and interact with them. It
was shown how, by purposeful manipulation actions, the extremely hard prob-
lem of visual segmentation in complex, uncontrolled scenes can be solved
much more reliably than by passive perception alone. Object segmentation
hypotheses are verified and corrected autonomously by the robot by physi-
cally interacting with them, thus making them much more meaningful and
reliable compared to passive observations.

Having segmented an individual object from its environment enables the
robot to study it further, e.g. by learning visual descriptors for recognition,
or to plan more complex manipulation tasks like grasping. To support the
latter, the complete shape of the object is estimated based on the visible parts.
When performing a grasp, due to the uncertainties inherent in real data from
the own perception of the robot, there is a risk of failure that can not be
neglected. To detect problems when they occur, visual perception can give
important information, in particular in situations where haptic sensing may
be insufficient.

7.1 Contributions

To summarize, the main scientific contributions of this thesis are:
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• Object segmentation by physical interaction
The problem of segmenting individual objects out of a scene contain-
ing many unknown objects in a complex, cluttered arrangement with-
out any prior knowledge about them is extremely hard to solve by
passive observation only. The developed approach for solving this
problem initially generates object hypotheses based on the perceived
scenes using a set of different heuristics. By actively inducing motion
to the underlying real objects, these hypotheses are verified. Depend-
ing on whether they move consistently or not, they are confirmed or
discarded. The individual points that constitute the hypotheses are each
verified or discarded, and the hypothesis is thus corrected. It is also
extended by adding nearby points that appear to move with it, which
are in turn verified after moving the object again. In contrast to other
work in this field, the approach presented here makes only minimal
assumptions about the objects and none about the background.

• Object shape completion
The resulting object segmentations were used to estimate a complete
3D shape model, which is particularly important when the object is
to be grasped. Here, a symmetry-based heuristic was developed that
generates complete shapes, using also information from the scene near
the object, and works in much less restricted scenes than comparable
methods.

• Visual collision detection for reactive grasp correction
To support grasping under uncertainty, which is particularly impor-
tant when handling unknown objects, an extension for grasping with
reactive corrections was developed. The proposed method for visual
collision detection complements classical haptic sensing in the situ-
ations where it may fail - when dealing with light objects that are
displaced easily without giving significant force feedback. This mo-
tion is detected visually, and used in a reactive grasping framework.
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Notably, this approach works with the internal cameras of the robot
that are moving themselves during grasping, and does not require prior
knowledge about the object or the background.

All developed methods were evaluated with real data, and their practi-
cal applicability was demonstrated on the humanoid robot ARMAR-III1.
The evaluation of the segmentation with objects from the YCB object set
showed that it reliably segments objects even in extremely cluttered scenes,
and clearly outperforms a non-interactive state-of-the-art segmentation al-
gorithm. The object shape completion was shown to generate models that
robustly come close to the real object shape even when the objects were
only perceived from one point of view. The high sensitivity of the visual
collision detection was ascertained experimentally, and it was evaluated how
effectively different reaction strategies using it can successfully correct grasp
attempts that would otherwise have failed.

The work on object segmentation by physical interaction has been pub-
lished in [Schiebener et al., 2011], [Ude et al., 2012], [Schiebener et al.,
2012], [Schiebener et al., 2013] and [Schiebener et al., 2014a], the work on
object shape completion in [Schiebener et al., 2016], and the work on vi-
sual collision detection and reactive grasping in [Schiebener et al., 2012],
[Schiebener et al., 2014b] and [Paikan et al., 2015].

7.2 Future work

The presented approaches offer several links to other fields of research related
to visual perception, learning and grasping on humanoid robots. The results
of the interactive segmentation are a perfect starting point for autonomous
learning of different properties of the discovered new objects. The learning

1 Videos of the execution of the object segmentation by physical interaction and the reactive
grasping with visual collision detection can be found on
www.youtube.com/watch?v=Rul21hZFoKE
www.youtube.com/watch?v=MkNIFWth5D4
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of visual multiview descriptors for recognition has already been investigated
during this thesis, but could and should be explored much more in depth.

Another idea is to have the robot autonomously study the physical proper-
ties of the objects like e.g. their mass distribution. Some preliminary results
in that direction were already achieved in a master’s thesis ([Puch, 2015]).
More generally, the affordances of the object, i.e. the ways how it can be
manipulated or used, could be explored by the robot. The more complex
manipulation actions necessary for this would certainly profit from a close
integration of visual and haptic sensing, which would allow a multimodal
exploration of the object.

Grasp planning on the segmented objects is an extremely interesting and
relevant topic. Although the completed shapes are sufficient to allow grasp
planners to find possible grasp configurations, it might be helpful to adapt
those planners in order to deal with shape uncertainty, which is inherent to
all models built from real sensor data, but is particularly high in the parts
where the shape was not perceived but just estimated.

Reactive grasping and reactive grasp corrections are indispensable for en-
abling robots to reliably perform grasping or other manipulation tasks in
uncontrolled real-world environments. The developed concept for reactive
grasping with visual collision detection was also successfully applied in
transferring grasp knowledge between different robotic platforms. It allowed
the iCub robot to adapt the grasping skill and grasp configurations taken from
ARMAR-III during execution, thus learning quickly how to grasp objects for
which ARMAR-III already had the necessary knowledge. This knowledge
was initially not appropriate for iCub due to its different size and kinematic
structure, but by detecting collisions during grasping and performing cor-
rective reactions until success, the grasp configurations could be adapted
([Paikan et al., 2015]).

Another interesting topic is the integration of different sensing modalities
for contact detection, like force sensors, tactile pads and proprioception with
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the visual collision detection. In the current implementation, a contact is de-
tected if any of these sensors perceives it. It might be possible to improve the
reliability of the detection by integrating these sources in a probabilistically
sound manner.
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