222,422 research outputs found

    Autonomous learning and reproduction of complex sequences: a multimodal architecture for bootstraping imitation games

    Get PDF
    This paper introduces a control architecture for the learning of complex sequence of gestures applied to autonomous robots. The architecture is designed to exploit the robot internal sensory-motor dynamics generated by visual, proprioceptive, and predictive informations in order to provide intuitive behaviors in the purpose of natural interactions with humans

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    A new approach for designing self-organizing systems and application to adaptive control

    Get PDF
    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed

    Application of Sparse Identification of Nonlinear Dynamics for Physics-Informed Learning

    Get PDF
    Advances in machine learning and deep neural networks has enabled complex engineering tasks like image recognition, anomaly detection, regression, and multi-objective optimization, to name but a few. The complexity of the algorithm architecture, e.g., the number of hidden layers in a deep neural network, typically grows with the complexity of the problems they are required to solve, leaving little room for interpreting (or explaining) the path that results in a specific solution. This drawback is particularly relevant for autonomous aerospace and aviation systems, where certifications require a complete understanding of the algorithm behavior in all possible scenarios. Including physics knowledge in such data-driven tools may improve the interpretability of the algorithms, thus enhancing model validation against events with low probability but relevant for system certification. Such events include, for example, spacecraft or aircraft sub-system failures, for which data may not be available in the training phase. This paper investigates a recent physics-informed learning algorithm for identification of system dynamics, and shows how the governing equations of a system can be extracted from data using sparse regression. The learned relationships can be utilized as a surrogate model which, unlike typical data-driven surrogate models, relies on the learned underlying dynamics of the system rather than large number of fitting parameters. The work shows that the algorithm can reconstruct the differential equations underlying the observed dynamics using a single trajectory when no uncertainty is involved. However, the training set size must increase when dealing with stochastic systems, e.g., nonlinear dynamics with random initial conditions

    A deep learning framework based on Koopman operator for data-driven modeling of vehicle dynamics

    Full text link
    Autonomous vehicles and driving technologies have received notable attention in the past decades. In autonomous driving systems, \textcolor{black}{the} information of vehicle dynamics is required in most cases for designing of motion planning and control algorithms. However, it is nontrivial for identifying a global model of vehicle dynamics due to the existence of strong non-linearity and uncertainty. Many efforts have resorted to machine learning techniques for building data-driven models, but it may suffer from interpretability and result in a complex nonlinear representation. In this paper, we propose a deep learning framework relying on an interpretable Koopman operator to build a data-driven predictor of the vehicle dynamics. The main idea is to use the Koopman operator for representing the nonlinear dynamics in a linear lifted feature space. The approach results in a global model that integrates the dynamics in both longitudinal and lateral directions. As the core contribution, we propose a deep learning-based extended dynamic mode decomposition (Deep EDMD) algorithm to learn a finite approximation of the Koopman operator. Different from other machine learning-based approaches, deep neural networks play the role of learning feature representations for EDMD in the framework of the Koopman operator. Simulation results in a high-fidelity CarSim environment are reported, which show the capability of the Deep EDMD approach in multi-step prediction of vehicle dynamics at a wide operating range. Also, the proposed approach outperforms the EDMD method, the multi-layer perception (MLP) method, and the Extreme Learning Machines-based EDMD (ELM-EDMD) method in terms of modeling performance. Finally, we design a linear MPC with Deep EDMD (DE-MPC) for realizing reference tracking and test the controller in the CarSim environment.Comment: 12 pages, 10 figures, 1 table, and 2 algorithm
    corecore