76,339 research outputs found

    Reducing the Environmental Impact of Wireless Communication via Probabilistic Machine Learning

    Full text link
    Machine learning methods are increasingly adopted in communications problems, particularly those arising in next generation wireless settings. Though seen as a key climate mitigation and societal adaptation enabler, communications related energy consumption is high and is expected to grow in future networks in spite of anticipated efficiency gains in 6G due to exponential communications traffic growth. To make meaningful climate mitigation impact in the communications sector, a mindset shift away from maximizing throughput at all cost and towards prioritizing energy efficiency is needed. Moreover, this must be adopted in both existing (without incurring further embodied carbon costs through equipment replacement) and future network infrastructure, given the long development time of mobile generations. To that end, we present summaries of two such problems, from both current and next generation network specifications, where probabilistic inference methods were used to great effect: using Bayesian parameter tuning we are able to safely reduce the energy consumption of existing hardware on a live communications network by 11%11\% whilst maintaining operator specified performance envelopes; through spatiotemporal Gaussian process surrogate modeling we reduce the overhead in a next generation hybrid beamforming system by over 60%60\%, greatly improving the networks' ability to target highly mobile users such as autonomous vehicles. The Bayesian paradigm is itself helpful in terms of energy usage, since training a Bayesian optimization model can require much less computation than, say, training a deep neural network

    SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation

    Full text link
    The testing of Deep Neural Networks (DNNs) has become increasingly important as DNNs are widely adopted by safety critical systems. While many test adequacy criteria have been suggested, automated test input generation for many types of DNNs remains a challenge because the raw input space is too large to randomly sample or to navigate and search for plausible inputs. Consequently, current testing techniques for DNNs depend on small local perturbations to existing inputs, based on the metamorphic testing principle. We propose new ways to search not over the entire image space, but rather over a plausible input space that resembles the true training distribution. This space is constructed using Variational Autoencoders (VAEs), and navigated through their latent vector space. We show that this space helps efficiently produce test inputs that can reveal information about the robustness of DNNs when dealing with realistic tests, opening the field to meaningful exploration through the space of highly structured images

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore