7 research outputs found

    Tracking and Grasping of Moving Objects Using Aerial Robotic Manipulators: A Brief Survey

    Get PDF
    Unmanned Aerial Vehicles (UAV) has evolved in recent years, their features have changed to be more useful to the society, although some years ago the drones had been thought to be teleoperated by humans and to take some pictures from above, which is useful; nevertheless, nowadays the drones are capable of developing autonomous tasks like tracking a dynamic target or even grasping different kind of objects. Some task like transporting heavy loads or manipulating complex shapes are more challenging for a single UAV, but for a fleet of them might be easier. This brief survey presents a compilation of relevant works related to tracking and grasping with aerial robotic manipulators, as well as cooperation among them. Moreover, challenges and limitations are presented in order to contribute with new areas of research. Finally, some trends in aerial manipulation are foreseeing for different sectors and relevant features for these kind of systems are standing out

    Fully autonomous micro air vehicle flight and landing on a moving target using visual–inertial estimation and model‐predictive control

    Get PDF
    The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) held in spring 2017 was a very successful competition well attended by teams from all over the world. One of the challenges (Challenge 1) required an aerial robot to detect, follow, and land on a moving target in a fully autonomous fashion. In this paper, we present the hardware components of the micro air vehicle (MAV) we built with off the self components alongside the designed algorithms that were developed for the purposes of the competition. We tackle the challenge of landing on a moving target by adopting a generic approach, rather than following one that is tailored to the MBZIRC Challenge 1 setup, enabling easy adaptation to a wider range of applications and targets, even indoors, since we do not rely on availability of global positioning system. We evaluate our system in an uncontrolled outdoor environment where our MAV successfully and consistently lands on a target moving at a speed of up to 5.0 m/s

    Vision-based Autonomous Tracking of a Non-cooperative Mobile Robot by a Low-cost Quadrotor Vehicle

    Get PDF
    The goal of this thesis is the detection and tracking of a ground vehicle, in particular a car-like robot, by a quadrotor. The first challenge to address in any pursuit or tracking scenario is the detection and unique identification of the target. From this first challenge, comes the need to precisely localize the target in a coordinate system that is common to the tracking and tracked vehicles. In most real-life scenarios, the tracked vehicle does not directly communicate information such as its position to the tracking one. From this fact, arises a non-cooperative constraint problem. The autonomous tracking aspect of the mission requires, for both the aerial and ground vehicles, robust pose estimation during the mission. The primary and crucial functions to achieve autonomous behaviors are control and navigation. The principal-agent being the quadrotor, this thesis explains in detail the derivation and analysis of the equations of motion that govern its natural behavior along with the control methods that permit to achieve desired performances. The analysis of these equations reveals a naturally unstable system, subject to non-linearities. Therefore, we explored three different control methods capable of guaranteeing stability while mitigating non-linearities. The first two control methods operate in the linear region and consist of the intuitive Proportional Integrate Derivative controller (PID). The second linear control strategy is represented by an optimal controller that is the Linear Quadratic Regulator controller (LQR). The last and final control method is a nonlinear controller designed from the Sliding Mode Control Theory. In addition to the in-depth analysis, we provide assets and limitations of each control method. In order to achieve the tracking mission, we address the detection and localization problems using respectively visual servoing and frame transform techniques. The pose estimation challenge for the aerial robot is cleared up using Kalman Filtering estimation methods that are also explored in depth. The same estimation method is used to mitigate the ground vehicle’s real-time pose estimation and tracking problem. Analysis results are illustrated using Matlab. A simulation and a real implementation using the Robot Operating System are used to support the obtained results

    Autonomous Flight for Detection, Localization, and Tracking of Moving Targets With a Small Quadrotor

    No full text
    corecore