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Abstract

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) held in spring 2017
was a very successful competition well attended by teams from all over the world. One of the
challenges (Challenge One) required an aerial robot to detect, follow and land on a moving
target in a fully autonomous fashion. In this paper, we present the hardware components of
the Micro Air Vehicle (MAV) we built with off the self components alongside the designed
algorithms that were developed for the purposes of the competition. We tackle the challenge
of landing on a moving target by adopting a generic approach, rather than following one that
is tailored to the MBZIRC Challenge One setup, enabling easy adaptation to a wider range
of applications and targets, even indoors, since we do not rely on availability of GPS. We
evaluate our system in an uncontrolled outdoor environment where our MAV successfully
and consistently lands on a target moving at a speed of up to 5.0 m/s.

1 Introduction

Robotics teams from all over the world attended the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) which was held in spring 2017 for the first time. The venue included an arena designed to deploy
aerial vehicles capable of executing autonomous flights. Challenge one required a drone to autonomously
detect and land on a flat ferrous target (1.5 m × 1.5 m) placed on top of a moving ground vehicle. The
duration of the challenge was constrained to 15 minutes. The moving ground vehicle had a speed of 15 km/h
for the first 8 minutes and 5 km/h for the next 7 minutes. A landing was considered successful only if the
drone neither had visible damage nor fell off from the target. Autonomous flight in such an uncontrolled
environment is challenging, as it requires fast response from sensing and precise state estimation, as well as
good synchronisation to other subsystems i.e. controller and target tracking.

Rather than custom-tailoring an approach to the specific challenge, we developed and integrated a suite
of algorithms that allow us fully autonomous flight in a wider range of scenarios and conditions, including
the ones of MBZIRC. In the design of both the platform and the software stack, we decided for a low-
cost, yet robust solution. Specifically, we adopt an extended visual-inertial odometry framework, OKVIS



(Leutenegger et al., 2014), providing the basis for control, even if GPS is either not available or not reliable
enough. A downward-looking fisheye camera is used for detection and tracking of a moving target, formulated
as a tracking problem in 3D space. We close the position control loop with a Model-Predictive Controller
(MPC), which has proven extremely robust even in windy conditions. The overall system performance is
evaluated in outdoor test flights simulating the MBZIRC challenge 1. We show that the proposed setup is
capable of landing on a target moving at up to 18 km/h in presence of wind in the order of 15 km/h. In
short, we make the following contributions that we believe will be of interest to the field robotics community:

• We describe in-depth a low-cost but robust hexacopter MAV with components dedicated for general
autonomous flight as well as landing on a moving target.

• We present a suite of estimation algorithms for motion tracking in GPS-denied environments using
an RGBD+IMU camera, as well as for detecting and tracking of the landing pattern.

• We introduce an MPC based on an identified linear MAV model that includes hard input constraints
as well as soft state constraints, minimizing a cost function that considers both reference position
and velocity for maximally accurate trajectory tracking.

The remainder of this work is organised as follows: we further detail related work in Section 2, followed
by an overview of the hardware and software system in Section 3. Common notations and definitions used
throughout this work are introduced in Section 4. The details of the visual-inertial estimation and control
algorithms are presented in Section 5 and 6 respectively. Last, we show our flight results in Section 7 and
discuss them in Section 8.

2 Related work

Micro Air Vehicles (MAV) have been deployed in a wide range of applications, described e.g. in (Kumar and
Michael, 2012). They are often used in aerial surveillance and tasks within complex and hazardous envi-
ronments where manual control may become difficult or impractical. Providing MAVs with the appropriate
level of control autonomy, has thus been a major challenge tackled by the community. In this context, such
systems should be designed to be robust under significant uncertainty for extended periods of time, as well
as able to compensate for failures without human intervention.

Amongst the first quadrotor control papers, we find (Castillo et al., 2003) where a control algorithm able to
stabilize the position of a quadcopter was presented. Later (Bouabdallah et al., 2004) presented a controller
able to stabilize the orientation of a quadcopter which was fixed on a testbed. This work was followed
by (Bouabdallah, 2007; Bouabdallah and Siegwart, 2007) where they presented experimental results of
autonomous operation including collision avoidance. They used a custom-made quadrotor with on-board
data processing equipped with all the necessary sensors for autonomous operation. Soon, the community
started investigating deployment of MAVs in GPS-denied environments, e.g. in a disaster scenario, such
as (Weiss et al., 2012), relying on an early adoption of visual-inertial estimation. (Bachrach et al., 2011)
further draws the attention to autonomously flying MAV within GPS-denied environment using a SLAM
system using a stereo camera and additionally relying on a laser scanner. Their system shows the potential
of employing a multilevel sensing and control hierarchy that is capable to close the loop of the fast dynamics
relying only on on-board sensors. Similar system setups with different cameras and sensors have been widely
used to explore complex indoor and outdoor scenes (Mahony et al., 2012; Shen et al., 2011) using either
monocular or stereo cameras. Compared to the stereo cameras, an RGB-D camera offers color images along
with pixel-aligned dense depth information. (Huang et al., 2017) presented a visual odometry and mapping
approach using an RGB-D camera, as well as an application to autonomous flight, while (Li et al., 2013a)
and (Li et al., 2015) presented a combined RGBD-inertial based state estimation scheme which along with
an RRT path planner enables autonomous navigation of an MAV in indoor environments (Li et al., 2013b).



Performing a fully autonomous landing, tracking and following a fast moving target is challenging. This
requires an MAV to employ accurate state estimation as well as requires the MAV to venture into the domain
of highly coupled nonlinear dynamics at high speeds. In the literature, a combination of vision-based SLAM
and model-based control has crystallised to be very suitable for such scenarios.

Vision-based SLAM has been widely used for state estimation of MAVs within both indoor and outdoor
scenarios. Its tremendous progress over the past years was driven by advances in computational power (e.g.
GPUs), availability of novel and cheaper sensors (e.g. depth cameras, MEMS IMUs). We distinguish sparse
systems, reconstructing the environment as a number of discrete 3D landmarks along with the motion of
the camera, detected and associated across image; and dense ones, representing a continuous map, usually
formulated in a direct manner, i.e. directly optimising for appearance consistency across successive image
frames. Sparse systems are typically less computationally intensive and thus more suitable for integration
into drones. For highest robustness and accuracy, the combination of visual-inertial SLAM has become very
popular, especially for use on-board drones. Amongst earliest adopters, (Weiss et al., 2012) used a loosely-
coupled combination of a visual SLAM system. More robust and accurate systems to detain the sparse world,
however, combine visual and inertial sensing modalities in a probabilistic and tightly coupled manner, using
filtering, such as (Mourikis and Roumeliotis, 2007) or a derivative of it, and optimisation techniques such
as (Forster et al., 2015; Kaess et al., 2012) or (Leutenegger et al., 2014), available open source as “OKVIS:
Open Keyframe-based Visual-Inertial SLAM”, which we adopted and modified in this work.

Autonomous flight also relies on precise control. Significant progress in this field has been made over the
last years. We would like to highlight the work of (Mellinger and Kumar, 2011) that was among the first
ones showing the aggressive flying capabilities of MAV. They presented a trajectory generation technique
which exploits the differential flatness property of an MAV; accompanied with a geometric tracking con-
troller, this enables precise tracking of aggressive but feasible maneuvers. Similarly, (Mueller and D’Andrea,
2014) presented a non linear controller which can stabilize an MAV despite the loss of one, two or three
propellers and demonstrate the significance of using the MAV model in the control synthesis. Regarding
linear model predictive control we consider the work of (Papachristos et al., 2016), (Darivianakis et al.,
2014) and (Oettershagen et al., 2014) to be the most related one with our control synthesis. They show
that a predictive controller can successfully be used for a variety of complex and practical applications (e.g.
physical interaction between MAV and the environment) and can easily be implemented in several platforms
from quadcopters, tiltrotors to fixed wing aircraft. We would also like to highlight the excellent work from
(Kamel et al., 2015) and (Kamel et al., ) where the idea of using the fully non-linear model in a predictive
controller is implemented for controlling the attitude and the position of an MAV respectively.

Given impressive developments on both vision-based SLAM and MAV control, (Lee et al., 2012) introduced
an MAV system able of tracking a moving target using an image-based visual servo system. Their vision
system is reported to be less sensitive and computationally cheaper in state estimation, which yields fast
response on MAV dynamics. (Serra et al., 2016) presented a system based on loosely-coupled visual-inertial
fusion, capable of landing on a moving target. (Borowczyk et al., 2016) designed an MAV system with
multiple cameras, IMUs and GPS. They implemented a Kalman filter based odometry algorithm which is
reported to accurately estimate the relative position and velocity between the vehicle and the moving target.
Their system successfully lands on a target moving with speed up to 50km/h. In some special scenario, the
moving target may not be flat. (Vlantis et al., 2015) proposed a self-adaptive MAV system that detects
and tracks the 3D pose of the moving target then adjust the MAV landing attitude. Their system shows
a successful landing on an inclined target of a moving ground robot. More recently, (Thomas et al., 2017)
presented a small MAV system(15cm diameter and 250g payload) that detects, localizes, and tracks moving
spherical objects relying only on onboard sensors and computation. Their proposed odometry and control
systems consider the underactuated dynamics, the actuator limitations, and the field of view constraints, in
order to give extra robustness to abrupt variations in target motion. We would also like to highlight the
work of other MBZIRC participants such as (Falanga et al., 2017), (Beul et al., 2017) and (Bähnemann
et al., 2017), where the last two of them achieved successful landing in the competition and their work will
be discussed later.



3 Overview of the system

3.1 Hardware

Our MAV is a custom built hexacopter, using off the shelf components. A hexacopter was preferred due to
its payload capacity compared to a quadcopter of a similar size.

We use the DJI F5501 frame due to its compact design and low cost. The propulsion system (motors-ESC-
propellers) is the DJI E3102. We prioritized the MAV responsiveness over the maximum flight time and
preferred the 960kV motor version.

The MAV is equipped with a Pixhawk3 flight controller, which is commonly used in research, and which
we flashed with a modified version of the PX4 firmware4. The firmware enables easy interaction, throught
mavlink messages, between the flight controller and the Intel NUC i7-7567U5 onboard computer.

An Intel RealSense ZR300 RGBD+IMU6 sensor is used for the state estimation scheme while a FLIR
Chameleon 37 is mounted on the lower plate of the MAV and is used for the target tracking. The whole
system is powered by a 4S Zippy Compact 5800 mAh battery which results a 15 minute flight time when the
system is fully loaded (Intel RealSense + onboard computer + downward looking camera). Special attention
was payed on the mechanical assembly of the Intel RealSense RGBD+IMU sensor and the Pixhawk flight
controller. They were soft mounted on the MAV frame to prevent the mechanical vibrations of the motors
from significantly affecting the natively noisy IMU measurements. The custom built MAV with all the extra
hardware components is illustrated in Figure 1 (left).

In order to absorb the impact energy when the hexacopter MAV performs high speed landing maneuvers,
an origami-folding inspired landing pad made from soft materials was designed using multi-material additive
manufacturing techniques. The landing pad shown in Figure 1 (right), is attached to each of the MAV
arms, consists of compliant hinges with geometry in single curvature shell and morphing shells which can be
passively bent by the impact forces when the six feet make contact with the landing site. The performance
of the soft landing pad depends on the thickness of the shells as well as the material used. In this work,
micro-carbon fiber reinforced thermoplastic, Markforged Onyx, was used and the modules were fabricated
with 0.1 mm thickness of each slice and triangular fill pattern at 100% fill density.

3.2 Software components

On the software side there are three main components. The visual-inertial odometry is responsible for
the estimation of the MAV position, orientation and the respective velocities. A target tracking EKF is
responsible for the estimation of landing target position and velocity. This information is later used by a
model predictive controller in order to stabilize the MAV and navigate it accordingly to a desired position.
We use ROS8 as a middleware for the exchange of data between the individual software components. An
overview of the hardware and software components is illustrated in Figure 2.

1
See https://www.dji.com/flame-wheel-arf.

2
See http://www.dji.com/e310.

3
See https://pixhawk.org/.

4
See https://github.com/PX4/Firmware.

5
See https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html.

6
See https://click.intel.com/realsense.html.

7
See https://www.ptgrey.com/chameleon3-usb3-vision-cameras.

8
See http://www.ros.org/.



Figure 1: Left: MAV hardware explained with most important components. Right: The soft landing pad in
its original configuration and the partially folded configuration where the magnet attaches to the horizontal
surface.

Figure 2: OKVIS (Leutenegger et al., 2014) is used in combination with the Intel RealSense ZR300 for
the visual-inertial estimation of the MAV state xR. A monochrome FLIR Chameleon 3 is used for the
detection of the moving target. The target state xT and the MAV state xR are further used in the MPC
which generates a reference quaternion qWB and reference collective thrust for the attitude controller. The
attitude controller is implemented on an mRo PixRacer flight controller which outputs the corresponding
ω1, · · · , ω6 motor commands.



4 Notation and definitions

We denote vectors as bold lowercase symbols, e.g. v. When required, we indicate the coordinate repre-
sentation in a frame of reference F−→A with left-hand subscripts, Av. A rotation matrix CAB changes the
coordinate representation of a vector from F−→B to F−→A as Av = CAB Bv. We also use quaternions to represent
this orientation, i.e. qAB . Operator ⊗ denotes the quaternion multiplication.

In terms of positions, we denote the position of a point P relative to the origin of F−→A as P rA. We use
homogeneous transformations TAB to change coordinate representations of position vectors in homogeneous
coordinates as PrA = TAB PrB .

All motion is referenced relative to a World-frame F−→W (Earth-fixed and tangential to the surface with z-axis
upward) that we approximate to be also an inertial frame. Moreover, we consider a moving landing target
frame of reference F−→T .

We formulate the MAV dynamics and controller relative to its centre of mass, with a respective coordinate
frame F−→B (x: forward, y: left, z: upward). In the specific sensor setup at hand, we consider the RGB-D
camera with its coordinate frame F−→C , and the downward-looking camera frame F−→D. We furthermore use
the IMU coordinate frame F−→S . The different coordinate frames used are illustrated in Figure 3.

Figure 3: The different coordinate frames used. Namely, F−→W : the Earth fixed frame, F−→B : the MAV body
fixed frame, F−→C : the RGB-D camera frame, F−→S : the IMU sensor frame, F−→D: the downward looking camera
frame and F−→T : the moving target frame.

5 Estimation of the MAV and target state

We use OKVIS: Open Keyframe-based Visual Inertial SLAM9 described in (Leutenegger et al., 2014) as
a basis for our MAV state estimation. We made, however, several extensions in order for it to be usable
with a low-cost RGB-D-inertial camera, as well as to increase accuracy. We furthermore present a suite of
detection and tracking algorithms implemented in order to reliably estimate the landing pattern pose and
velocity using the downward-looking fisheye camera.

5.1 Visual-inertial MAV state estimation

The variables to be estimated consist of the robot states at the image times (index k) xkR and landmarks
xL. xR holds the robot position in the inertial frame W rS , the body orientation quaternion qWS , the
velocity expressed in the sensor frame Sv , as well as the biases of the gyroscopes bg and the biases of the
accelerometers ba. Thus, xR is written as:

xR :=
[
W rS

T ,qWS
T ,W vWS

T ,bTg ,b
T
a

]T
∈ R3 × S3 × R9. (1)

9
Available open-source at http://ethz-asl.github.io/okvis/.



We adopt the approach of ORB-SLAM 2 (Mur-Artal and Tardós, 2017) to create a virtual stereo camera
to incorporate depth information per keypoint measurement in the RGB image (if available). We obtain
virtual keypoint measurements by projecting 3D points into the virtual second camera frame at pose F−→Cv

.

Let u = u(PrC) be the RGB camera projection model (which may include distortion), and PrC = h−1(u,D)
the back-projection from image coordinates to a homogeneous point represented in F−→C , given the depth
image D. We can now create virtual keypoint measurements zjv from actual measurements zj , iff depth is
given for said pixel, as

zjv = uv(TCvC
u−1(zj ,D)), (2)

where TCvC
denotes the pose of the virtual camera relative to the RGB camera and uv(·) stands for the

projection model that we define as uv(·) := u(·) for convenience. Note that this scheme allows for easy
compatibility with an N-camera system assumed in (Leutenegger et al., 2014). Furthermore, since the depth
map of the camera we use was indeed obtained through stereo triangulation, formulating reprojection errors
in a stereo setup (even if virtual), correctly accounts for noise in image space. We set the baseline in TCvC

to the actual distance between the infrared stereo camera, 10 cm in our case.

Now we can formulate the overall cost function consisting of reprojection errors ej,kr , virtual camera repro-
jection errors ej,kr,v and IMU errors as eks

J(x) :=

K∑
k=1

∑
j∈J (k)

ej,kr

T
Wj,k

r ej,kr +

K∑
k=1

∑
j∈Jv(k)

ej,kr,v

T
Wj,k

r,vej,kr,v +

K−1∑
k=1

eks
T

Wk
s eks , (3)

where k stands for the camera frame index, and j denotes the landmark index. The indices of landmarks
visible in the kth RGB frame are written as the set J (k) (and analogously as Jv(k) for the virtual camera).

Moreover, Wj,k
r represents the information matrix of the respective landmark measurement, and Wk

s the
information of the kth IMU error.

Now, the reprojection error for the jth landmark W l
j viewed in the kth RGB camera image is defined as

ej,kr = zj,k − u
(
T kCS T

k
SW W l

j
)
, (4)

and analogously in the virtual camera. See (Leutenegger et al., 2014) for details about data-association,
linearisation, the IMU error term formulation, the optimisation and the marginalisation scheme applied.

5.2 Landing pattern detection and tracking

Our vision pipeline of establishing the target pose at each frame the downward looking fisheye camera takes,
consists of a detection step, requiring the entire landing pattern (as specified by the MBZIRC organisers) to
be visible and a tracking step, where we use a motion model and observations of parts of the landing pattern
that are sufficient to reliably and accurately maintain the pose estimates.

5.2.1 Landing pattern detection and initial pose estimation

Our landing pattern detection pipeline first applies basic image processing steps, namely undistortion,
smoothing, locally adaptive-threshold binarisation, edge detection and contour extraction (with polygon
simplification). We then run P3P pose estimation on detected quads. All of these steps are implemented
using the OpenCV library10.

Thus far, the procedure is similar to state-of-the-art marker detectors, such as AprilTags C++ (Kaess, 2013)
– note, however, that the latter would not run in real-time on our platform.

10
See http://opencv.org/.



The final step of verification involves a perspective warp and comparison to the template landing pattern
via one BRISK (Leutenegger et al., 2011) descriptor match (which is extremely fast). As a template, we use
a 255 by 255 image of the landing pattern.

Figure 4 shows an example of these steps based on an image taken with our downward looking fisheye camera.

Figure 4: From left to right: undistorted image with detected quad (red), adaptively thresholded image for
contour extraction, perspectively warped detection for appearance verification, and target template pattern.

5.2.2 Landing target tracking

We track the landing target by means of an Extended Kalman Filter (EKF), where we assume the MAV
pose is given by the estimator described above, and poses are accurate enough.

The dynamics employed for the prediction step consists of a constant velocity model for linear translation, and
a constant orientation model, since rotation speeds of the target remain small. Inclusion of linear velocity of
the target into its estimated state, however, is crucial, since we need it for accurate Model Predictive Control
(MPC).

In maths, we estimate the following target state:

xT :=
[
W rT

T ,qWT
T ,W vWT

T
]T
∈ R3 × S3 × R3, (5)

and we consider the following prediction model:

W ṙT = W vWT , (6)

q̇WT =
1

2

[
wrot

0

]
⊗ qWT , (7)

W v̇WT = wvel, (8)

where wrot and wvel denote 3-dimensional uncorrelated Gaussian white noise processes affecting orientation,
and velocity, respectively. In our experiments, we set the noise parameters of said processes to σrot =
[0.02, 0.02, 0.2]T rad/

√
hz and σvel = [0.1, 0.1, 0.1]Tm/(s

√
hz), respectively.

For the update step, we employ observations of pre-defined landing pattern keypoints. Please refer to Figure 5
for an illustration of the specific keypoint locations on the target pattern at hand.

As the measurement function, we therefore use the predicted keypoint location of the tth keypoint into the
(undistorted) downward-looking fisheye camera:

ht(xT) = uD(T−1
WD TWT Trt), (9)

where uD denotes the (undistorted) projection model of the downward looking camera, the transformation
TWD is obtained through visual-inertial MAV state estimation, and the location of the keyoint on the target,

Trt, is a known constant.



Note that in our implementation, we use a tangent space representation of the orientation, δαWT , around
the current estimate qWT analogous to (Leutenegger et al., 2014), as

qWT = exp(δαWT )⊗ qWT =

 sinc
∥∥∥ δαWT

2

∥∥∥ δαWT

2

cos
∥∥∥ δαWT

2

∥∥∥
⊗ qWT , (10)

With the exponential map exp(·). We refer the reader to Appendix A, where we provide the full set of EKF
prediction and update equations, including the Jacobians of Equation (9).

In order to obtain the keypoint measurements to formulate the EKF update residual, we employ tracking in
image space: we use 20 by 20 pixel patches around the keypoints warped from the pattern template image
using the predicted pose relative to the camera observing them. Then, using keypoint location predictions
from Equation (9), we brute-force search their neighbourhood in the binarised image (60 by 60 pixel) by means
of finding the square difference minimum w.r.t. the warped template patches. In our implementation, we used
a keypoint measurement standard deviation of 5 pixels – partly accounting for the lack of proper hardware
synchronisation between the RealSense (used for OKVIS) and the downward looking fisheye camera. For
outlier removal, we discard keypoint measurements where this difference is two high, and also those whose
residuals don’t pass a Chi-square test (threshold: 9).

We illustrate these steps in Figure 5.

Figure 5: Top row: projected predicted keypoint neighbourhoods (search area) as blue boxes, and actual
found detections as green circles (right: zoomed in). Middle row: binarised search neighbourhoods. Bottom
row: respective warped templates to match.

6 Control architecture

Position tracking is achieved by means of a cascaded connection of a Model Predictive Controller (MPC)
for the MAV position and a PID controller for its attitude. We implemented our MPC on the onboard
computer whereas the PID controller is implemented on the Pixhawk flight controller as an off-the-shelf
component. The above approach was motivated by the fact that the majority of the commercially available
flight controllers and MAV come with a pre-implemented attitude controller which requires little or even no
tuning enabling easy adaptation to a wide range of platforms. This approach also allows a simpler model to



be used in the position MPC. The MAV non-linear dynamics combined with a well tuned attitude controller,
can be sufficiently approximated, as it will be shown later, with a much simpler linear model which describes
the evolution of the combined attitude controlled-MAV dynamics.

Our work on the control synthesis is closely related to previous work of (Papachristos et al., 2016; Darivianakis
et al., 2014) that has been successfully implemented on similar multirotor platforms and (Oettershagen et al.,
2014; Oettershagen et al., 2016) that has been deployed on fixed wing platforms.

However, our work differs from them in that we employ soft state constraints which can be occasionally
violated in order to guarantee the feasibility of the underlying optimization problem. Moreover, we do not
make use of a pre-computed solution of the optimization problem, in the form of look up tables. This is
formulated as a Quadratic Program (QP) and is being solved in realtime. The current approach enables
seamless tuning of the control parameters and fast adaptation to different control models and constraints as
the computation of an explicit solution in not needed.

6.1 Linear model and system identification

The model used for control uses Euler angles (ZYX convention with yaw ψ ∈ [−π, π), pitch θ ∈ [−π2 ,
π
2 ),

roll φ ∈ [−π, π)) as a parameterization for the MAV orientation. Quaternions are used for state estimation
as it was designed to describe any possible motion (not bound to the the application at hand) avoiding the
numerical issues related to gimbal lock. Euler angles, however, are preferred for the control formulation as
it is easier to derive the corresponding linear model. We ensure through optimization constraints that the
MAV operates at pitch angles far from the gimbal lock.

Since the heading angle ψ does not contribute to the translational motion of the MAV and in order to
eliminate it from the model used for control, we express the MAV position and linear velocities in the
navigation frame F−→N . The frame F−→N is obtained when the frame F−→W is rotated by an angle ψ around its
z axis and translated to the origin of the body frame F−→B . The used linear model takes the following form:

N v̇ =

 gθ − cxẋ
−gφ− cy ẏ
T − cz ż

 , (11)

with g = 9.81 m/s2 the gravitational acceleration. The linear model was derived by assuming that the MAV
is in a near-hover operation and that the translational dynamics are controlled by the projection of the MAV
thrust force on the F−→N in order to generate translational acceleration. The terms cxẋ, cy ẏ, cz ż model the
system damping due the aerodynamic friction, approximated as linear damping.

Regarding the closed loop attitude dynamics, we follow a similar approach to (Darivianakis et al., 2014) and
assume that these can be approximated by a second order system. Namely:

θ̈ = −bθ̈θθ − bθ̈θ̇ θ̇ + bθrθ
r,

φ̈ = −bφ̈φφ− bφ̈φ̇φ̇+ bφrφr, (12)

where θr and φr refer to the reference θ and φ angles, respectively (θr and φr are the angles commanded to
the attitude controller while θ and φ the ones actually achieved by the MAV). As far as the motor dynamics
are concerned, it is assumed that they are significantly faster than the closed loop attitude dynamics and
can thus be ignored. This means that the applied thrust T coincides with the reference one T r. It is noted
that the reference thrust T r also contains a feed forward term to compensate the acceleration due to gravity.

The unknown constant parameters ci and bi of the Equations 11 and 12 were identified offline using frequency
domain grey-box identification with experimental data captured from manual flights. An accurate system
identification would require the application of a chirp signal, which would expose the dominant frequencies
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Figure 6: Real and simulated response for θ, φ, ẋ, ẏ, ż, ẍ, ÿ and z̈. Despite the use of a linear model,
the simulated and the real attitude response (upper two plots) of the MAV almost always coincide. The
simulated translational dynamics (lower 6 plots) – not surprisingly – best match the real ones in the low
velocity/acceleration region.

of the system. This would yet lead to an unsafe experiment where the MAV rotates according to the chirp
input but its position remains uncontrolled, and that is why the manual flight was preferred.

Two different types of datasets were recorded. In the first one, all the axes were excited independently and it
was used for the parameter estimation while in the second one all the axes were excited simultaneously and
was used for validation of the estimated parameters in order to avoid over-fitting. Figure 6.1 shows the real
and the simulated response of the identified closed loop attitude dynamics when the inputs of the validation
dataset are used and also the real and simulated responses for the translational dynamics.

Using the Equations 11 and 12 and by defining the state vector x :=
[
NrB

T ,NvTB , θ, φ, θ̇, φ̇
]T
∈ R6× S×R2

the input vector u := [θr, φr, T r]
T ∈ S×R where S := {θ ∈

[
−π2 ,

π
2

)
, φ ∈ [−π, π)}, the system dynamics can

be written in the following time-invariant state space representation:

ẋ =

ALon 04×4 02×2

04×4 ALat 02×2

02×4 02×4 AAlt


︸ ︷︷ ︸

A

x +

BLon 04×1 0
04×1 BLat 0
02×1 02×1 BAlt


︸ ︷︷ ︸

B

u

y = Cx (13)



where C = I10×10 and the submatrices ALon, ALat, AAlt, BLon, BLat, BAlt are given by the following:

ALon =


0 1 0 0
0 −cx g 0
0 0 0 1
0 0 −bθ̈θ −bθ̈θ̇

 , BLon =


0
0
0
bθr

 , (14)

ALat =


0 1 0 0
0 −cy −g 0
0 0 0 1
0 0 −bφ̈φ −bφ̈φ̇

 , BLat =


0
0
0
bφr

 , (15)

AAlt =

[
0 1
0 −cz

]
, BAlt =

[
0
1

]
. (16)

Notice that the state vector used for control x := [NrB
T ,NvTB , θ, φ, θ̇, φ̇]T is a subset (with slight transforma-

tion) of the full state vector as estimated in Equation 1. Specifically NrB
T and NvTB stand for the position

and velocity of the MAV expressed in the F−→N while θ, φ and θ̇, φ̇ stand for the MAV pitch and roll angles
and their corresponding time derivatives. θ, φ can easily be obtained by converting the estimated quaternion
qWB to Euler angles while their time derivatives can be obtained by the following:[

φ̇

θ̇

]
=

[
1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

]
Bω , (17)

with Bω the rotational velocity of the MAV expressed in the F−→B frame.

Since the controller is implemented in discrete time, the above equations are discretized using zero order
hold for the input u. The discrete equivalent of the matrices A, B, C can be obtained by:

Ad = eAdt,

Bd =

∫ dt

0

eAτdτ, (18)

Cd = C.

The discretization step dt coincides with the control update rate and was set to 50 ms.

6.2 MPC with soft constraints formulated as a QP

The implemented MPC computes the optimal input sequence ū∗ = u∗0 . . . u
∗
N−1 which is the solution of the

following optimization problem:

ū∗ = argmin
u0...uN−1

J,

s.t. : xk+1 = Adxk + Bduk,
yk = Cdxk, (19)

x0 = x̂0,

ūmin ≤ ū ≤ ūmax,

where: xk ∈ Rn is the system state at time k, x̂0 ∈ Rn the estimated state at time 0, yk ∈ Rp the system
output at time k, syk ∈ Rp the reference output at time k, suk ∈ Rm is the reference input at time k, N ∈ Z+

the length of the prediction horizon and Ad ∈ Rn×n,Bd ∈ Rn×m,Cd ∈ Rp×nare the discrete state, input and
output transition matrices as defined in Equation18.

The cost function

J =

N−1∑
k=0

(∥∥Qk+1(yk+1 − syk+1)
∥∥2

2
+ ‖Rk(uk − suk)‖22

)
(20)



is the quadratic penalty function on the states and inputs commonly used in optimal control, where the
input and output gain matrices Rk ∈ Rm×m and Qk ∈ Rn×n are tuning parameters. By concatenating the
two squared 2-norms that appear in the cost function J , we can rewrite it as:

J =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Q1(y1 − sy1)
Q2(y2 − sy2)

...
QN (yN − syN )
R0(u0 − su0 )
R1(u1 − su1 )

...
RN−1(uN−1 − suN−1)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(21)

and by assigning ȳ = [y1, y2, · · · , yN ]T , ū = [u0,u1, · · · ,uN−1]T , s̄y = [sy1, s
y
2, · · · , s

y
N ]T , s̄u =

[su0 , s
u
1 , · · · , s

u
N−1]T , Q̄ = diag(Q1,Q2, · · · ,QN ) and R̄ = diag(R0,R1, · · · ,RN−1) the original optimization

problem, takes the following form:

ū∗ = argmin
u0...uN−1

∥∥∥∥Q̄(ȳ− s̄y)
R̄(ū− s̄u)

∥∥∥∥2

2

,

s.t. : xk+1 = Adxk + Bduk,
yk = Cdxk, (22)

x0 = x̂0,

ūmin ≤ ū ≤ ūmax.

We can eliminate the model equality constraints from 22 by substituting ȳ = C̄x̄ = C̄Φx̂ + C̄Γū into the cost
function J , where x̄ = [x1, x2, · · · , xN ]T and the matrices Φ ∈ RNn×n and Γ ∈ RNn×Nm can be obtained
by applying the equations xk+1 = Adxk + Bduk and yk = Cdxk to every element of x̄. Specifically, these are
given by:

Φ =


Ad
A2
d
...

ANd

 , Γ =


Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...

AN−1
d Bd AN−2

d Bd · · · Bd

 . (23)

The optimization problem is transformed into the following equivalent QP with inequality constraints:

ū∗ = argmin
ū

ūT
(

Q̄C̄Γ
R̄

)T (Q̄C̄Γ
R̄

)
ū− 2

(
Q̄s̄y − Q̄C̄Φx̂0

R̄s̄u
)T (Q̄C̄Γ

R̄

)
ū

s.t. : ūmin ≤ ū ≤ ūmax. (24)

In order to ensure operation within a safe state envelope, it is common in MPC to impose additional state
constraints. These can be modeled as hard constraints similar to the input constraints ūmin ≤ ū ≤ ūmax. In
this case the optimization solver may face an infeasible problem since the set of admissible points as defined
by the problem constraints is empty e.g. when a large disturbance has occurred or when the real and the
estimated model used for control behave differently.

In order to avoid the case of infeasibility we model the state constraints Gx̄ ≤ h, with G ∈ RNl×Nn as soft
constraints which can be violated if necessary. We incorporate them into the cost function J following a
similar approach discussed in (Maciejowski, 2002) and (Kerrigan and Maciejowski, 2000).

The modified cost function Jm is:

Jm = J + λ1T(Gx̄− h)+. (25)



The subscript + implies that (Gx̄ − h)+ = Gx̄ − h when Gx̄ − h ≥ 0 and 0 otherwise. Overall, the term

1T(Gx̄− h)+ is the sum of constraints violation while the gain λ ∈ R is large enough in order to ensure that
the modified optimization problem with soft constraints, when none of the constraints is active, is equivalent
to the optimization problem where the state constraints are modeled as hard.

The optimization problem with the soft state constraints can be rewritten as the following equivalent QP by
introducing the slack variables s.

ū∗, s∗ = argmin
ū,s

J + λ1T s

s.t. :


I 0
−I 0
GΓ −I
0 −I

(ū
s

)
≤


ūmax
−ūmin

h−GΦx̂0

0

 (26)

By introducing t = [ū, s]T ∈ RN(l+m) the above QP is written in its canonical form as:

t∗ = argmin
t̄

t>
(Q̄C̄Γ

R̄

)T (Q̄C̄Γ
R̄

)
0

0 0

 t +

[
−2

(
Q̄s̄y − Q̄C̄Φx̂0

R̄s̄u
)T

λ1>
]

t,

s.t. :


I 0
−I 0
GΓ −I
0 −I

 t ≤


ūmax
−ūmin

h−GΦx̂0

0

 . (27)

The above QP can be solved in realtime using any generic QP solver. We use CVXGEN (Mattingley and
Boyd, 2012) which generates a tailored to the specific problem interior-point based C code and in practice
was the fastest QP solver tested. According to the authors of the optimization toolbox, nearly all the
computational effort in each iteration stems from the solution of two linear systems resulting in a worst case
computation complexity of O(n3) where n = N(l+m) corresponds to the number of optimization variables in
the final QP problem and N , l and m to the length of the prediction horizon, the number of soft constraints
and the number of inputs, respectively, as introduced above.

The mean computation delay of the QP solver for all the experiments presented in the Section 7 was 709.53 µs
with a standard deviation σ = 69.85 µs. The hardware used consists of an Intel NUC i7-7567U with 16
Gb RAM and Ubuntu Server 16.04. Figure 7 shows the computation delay data for all the experiments
conducted. In all the experiments the worst case delay is lower than 1.0 ms which means that we could run
the controller at a higher update rate than the current 20 Hz rate.

6.3 Position and velocity reference generation

Although our controller can natively handle a reference input that is time varying over the prediction horizon
s̄u = [su0 , s

u
1 , · · · , s

u
N−1]T and output s̄y = [sy1, s

y
2, · · · , s

y
N ]T , for simplification, we do not explicitly generate a

time varying reference but a static one which remains constant over the prediction horizon.

The approach of position setpoint instead of trajectory control is sufficient for waypoint navigation but
insufficient when tracking of a moving target is required. Generating a sequence of reference position setpoints
based on the observed position of the moving target will result a constant offset, similar to the case of PD
control, between the position of the MAV and the target. This is the result of the zero velocity requirement
at each position setpoint which does not hold in the case of a moving target. We tackle this problem
by not only penalizing deviation from a reference position but also from a reference velocity which in
this case corresponds to the estimated velocity of the target. It is also worth mentioning that in our
implementation, the prediction horizon is relatively short 0.1 s. Similarly, we can penalize deviation from a
reference acceleration by incorporating it in s̄u.
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Figure 7: Box plot with the MPC computation delay data. In all the experiments the worst case delay is
less than 1.0 ms showing that we could run the controller at a much higher rate than the current 20 Hz rate.
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Figure 8: The reference generation scheme. The incorporation of the reference velocities and not only the
position, improves the overall tracking performance of the system. The low pass filters for the position and
velocity are used in order to prevent jittery MAV motion due to noisy target detections. The target position
prediction by the tPrediction time offset, is performed to counteract significant unmodeled delays that exist
in the system.

The scheme for the generation of the commanded setpoint(which includes both reference position and veloc-
ity) is illustrated in Figure 8. For simpler tasks such as waypoint navigation we follow the standard approach
where position commands with zero reference velocities are sent to the controller.

We use low pass filters for the reference position and velocity with cutoff frequencies fCutOffPosition,
fCutOffVelocity in order to avoid passing jittery commands to the MAV due to noisy target position and
velocity estimates. The target position prediction by the time offset tPrediction, assuming constant velocity,
is used in order to counteract the delay between a successful target detection and the actual maneuver of
the MAV. The use of such a time offset was also motivated to compensate significant unmodeled delays that
exist in the system such as the one related to the downward looking camera vision processing which arises
from the lack of its hardware synchronization. Notice that the prediction of the target position also depends
on its estimated velocity, while the time offset tPrediction was a constant parameter determined by tuning of
the whole system (before conducting the series of reported experiments). Its numeric value is given – along
with all the other parameters – in Table 2.

6.4 High level mission profile

The overall behavior of the MAV is controlled by a state machine with the following operation modes which
in an ideal experiment, are triggered sequentially.



Idle Mode: This is the default mode when the mission is initially triggered. The motors are disarmed and
a zero thrust and orientation command T r = 0, qrWB = [1, 0, 0, 0]T is sent to the MAV.

Taking Off Mode: This mode is triggered once the first valid state estimation message becomes avail-
able. An arming command is sent to the motors and the MAV takes off to the predefined altitude
zTakeOffHeight with a predefined ascending velocity żTakeOffVelocity.

Waypoint Mode: Immediately after take off, the MAV flies towards a predefined waypoint which coincides
with the cross point of the figure-eight trajectory that the ground vehicle was following in the
MBZIRC challenge.

Follow Mode: This mode is triggered when the landing pattern is successfully detected for the first time.
A position and velocity command based on the procedure described in 6.3 is sent to the controller.
When the difference between the current time tCurrentTime and the time of the last target detection
tLastDetection is greater than the timeout parameter tDetectionTimeOut, we assume that the target is
not visible anymore and return back to the waypoint mode. The tDetectionTimeOut has to be set high
enough to allow the MAV to move close to where the target was detected but low enough to enable
fast recovery to the waypoint in the case of an actual detection loss.

Landing Phase 1: Once the MAV has properly caught up the moving target, it starts descending towards it

with a predefined velocity żDescendingP1. This mode is triggered when
√

(xB − xT )2 + (yB − yT )2 ≤

dPositionThreshold and
√

(ẋB − ẋT )2 + (ẏB − ẏT )2 ≤ dVelocityThreshold where xB , xT , yB , yT stands

for the x, y position and velocity, expressed in the F−→W , of the MAV and the target respectively.
Similarly to the follow mode, if tCurrentTime − tLastDetection ≥ tDetectionTimeOut we consider that the
target is not visible anymore and return back to the waypoint mode.

Landing Phase 2: This is similar to the Landing Phase 1 mode apart from the facts that the descending
velocity is now żDescendingP2 and that the target detection timeout check is ignored. This means
that once the MAV enters this mode when zB − zT ≤ zLandingP2Offset – where zB , zT are the z
position expressed in the F−→W of the MAV and the target – a landing that cannot be canceled will
be attempted. The above feature is necessary since reliable target tracking cannot be guaranteed
when the MAV is really close to the target (due to partial visibility, blur, etc.).

Landed: This is the last operation mode which is triggered when zB − zT ≤ zSuccessfulLandingOffset. After
successful landing a disarming command is sent to the motors and the mission has ended.

Figure 9 shows a flowchart with the described operating modes including the strategies in the case of target
detection loss.

7 Field experiments

In order to validate the performance of our platform and the developed algorithms, we performed a series
of outdoor experiments replicating a similar to the MBZIRC Challenge 1 scenario. Note that we performed
these experiments after our participation in MBZIRC, where the preliminary version of the described system
proved too unreliable, specifically in the extreme wind conditions, and triggered us to improve several aspects
of hardware, algorithms, and software.

The experimental flow is as follows: The MAV takes off from the starting point location where it is initially
placed on a 45cm height box. This is necessary in order to make sure that OKVIS can detect and track
salient points on the RGB image. Once take off is completed, the MAV navigates to the predefined waypoint
where it hovers till the target gets detected. After successful detection, the MAV tries to follow the target
and land on it. The transition between the different operating modes is the one described in Section 6.4.
The MAV executes the whole task autonomously and does not use any user provided information about the



Figure 9: Flowchart indicating the transition between the various operating modes.

target position and velocity but it exclusively relies on its onboard sensors and algorithms. A human pilot
triggers the start of the mission and can also manually intervene in order to prevent a catastrophic crash
in case of an algorithmic failure. We annotate every experiment as Successful or Failed based on whether
the MAV managed to land successfully on the target according to the MBZIRC Challenge 1 specifications
11. Specifically, a successful landing is when the MAV comes to a rest on the landing target, with the MAV
intact.

The landing target is identical to the one used in the MBZIRC Challenge 1 and was being pulled manually,
in a random way, with a rope. We tested moving the target with velocities between 1.3 m/s and 5.7 m/s
which exceeds the maximum target velocity of 4.1 m/s during the MBZIRC Challenge 1. Table 1 contains
the results of the conducted experiments while Table 2 contains a list for all the parameters used in the
developed algorithms. Alongside the outcome (Successful/Failed) for each experiment, Table 1 contains the

norm of the position error exy =
√

(xB − xT )2 + (yB − yT )2 between the MAV and target position when the

MAV has landed and the time tTrackingDuration which corresponds to the time that was needed for a successful
landing from the time instant where the target was initially detected.

Since no motion capture system or RTK GPS was used, we cannot provide ground truth for the MAV and
target position. All the data presented in this section corresponds to the estimates from OKVIS and the
target tracking EKF.

Table 1: Successful/unsuccessful landings

Experiment No 1 2 3 4 5 6 7 8 9 10 11 12

Average Velocity v̄ [m/s] 1.3 1.7 2.0 2.0 2.3 2.4 3.5 3.8 4.0 4.6 5.0 5 .7
Position error exy [cm] 2.5 11.8 5.2 30.6 16.5 6.6 30.2 18.6 15.6 29.8 45.8 7.6
Tracking Duration [s] 5.06 4.78 5.55 7.65 7.12 5.64 4.97 5.91 7.47 6.09 5.59 4.97

Experiment Outcome* S S S S S S S S S F S F
* S = Successful, F = Failed.

11
See https://www.mbzirc.com/faqs/2017.



Table 2: Parameters
fCutOffPosition 30 hz zTakeOffHeight 5.2 m żTakeOffVelocity 0.5 m/s
fCutOffVelocity 30 hz dPositionThreshold 0.8 m dVelocityThreshold 0.8 m/s
tPrediction 0.1 s zLandingP2Offset 2.5 m żDescendingP1 1.3 m/s
tDetectionTimeOut 0.5 s zSuccessfulLandingOffset 0.35 m żDescendingP2 1.8 m/s

7.1 Experimental results

In this section, we present the MAV, the target position and attitude data for three selected experiments.
Specifically, two of them (Figures 10, 12 and Figures 11, 13) were successful (one with low target velocity
and another with high speed), whereas the third one (Figures 14, 15) was unsuccessful. The figures for the
remaining nine experiments are included in the Appendix. Also, a video showing the successful experiments
can be found here12. In all the figures presented, solid lines refer to the estimated values given by OKVIS
while the dashed ones refer to their corresponding reference. Reference position xr, yr, zr was generated
as described in Section 6.3 while θr, φr and T r were obtained by solving the MPC optimization problem.
ψr was always kept to zero. Also, notice that there is no solid line for T r (plotted in Newtons) since – as
explained in Section 6.1 – the dynamics of the motors were ignored and it was assumed that the applied
thrust T coincides with the reference T r.

8 Discussion

From the experimental results, we realize that our hardware and software framework achieves the original
goal that it was designed for with high repeatability. The majority of the experiments (10/12) were successful
whereas there were only 2 failed attempts, both in the high velocity region (4.6 m/s and 5.7 m/s). The worst
case position error exy between the target and the MAV after landing was 45.8 cm which –not surprisingly–
corresponds to the fastest successful attempt No 11. The reference tracking and landing accuracy achieved
by the controller were more than sufficient especially considering the size of the MAV and the landing target
and the fact that the experiments were conducted in an outdoor environment. The position error is generally
larger in the high velocity experiments (No 7, 8, 9, 11) and lower in the slower ones (No 1, 2, 3, 4, 5, 6). We
consider the noisy and uncontrolled outdoor environment (presence of wind and varying lighting conditions,
which affect the target state estimation) to be the main reason.

Concerning MAV state estimation, with appropriate settings of gain and brightness on the Realsense RGB-D
camera, we have not experienced any problems related to lack of tracked keypoints, therefore leaving the
visual-inertial estimation system working flawlessly.

Regarding the attitude commands generated by the MPC, these are generally not smooth in the high
velocity Experiments but smoother for the low velocity ones. This was the result of over-penalizing the
position/velocity error compared to the penalization of the smoothness terms. In other words, the gains of
the optimization problem are chosen in a way such that position/velocity tracking is prioritized over smooth
attitude changes. Regarding the MAV response to the attitude commands, there is an amplitude difference
and a phase delay between the commanded attitude angles and the real ones. Since the linear model also
includes an estimated model for the closed loop attitude dynamics (Equation 12), this difference between a
command and the actual response is taken into account by the MPC. We also observe that although the ψr

was always kept to zero, ψ was minimally affected when aggressive θr, φr were required. This is the result
of existence of coupling between the MAV degrees of freedom; something not captured by the linear model
used for control.

It is important to highlight that our controller does not contain any integral error term and generally it

12
See https://youtu.be/PbYXuLkxEPM.



Figure 10: Position and attitude data for Experiment 11. A successful landing on a target moving with
5.0 m/s was achieved. The dashed lines on the upper 3 plots correspond to the reference position which is
generated based on the estimated position and velocity of the target as described in Section 6.3. Dashed
lines on the lower 3 plots correspond to the attitude angles and thrust generated by the MPC. The MAV
lands 5.59 s after the first target detection and 45.8 cm away from the target center.



Figure 11: Position and attitude data for Experiment 1. A successful landing was achieved on a target
moving with 1.3 m/s. The MAV lands 5.06 s after the first target detection and 2.5 cm away from the target
center.



Figure 12: The MAV and target position (visualized as a 3D plot) for the Experiment 11. Dashed lines
indicate the corresponding target detection/tracking.

Figure 13: The MAV and target position in 3D for the Experiment 1.



Figure 14: Position and attitude data for Experiment 12. A failed attempt of landing on a target moving
with 5.7 m/s was performed. Although that the final position error exy between the target and the MAV
is only 7.6 cm, the real MAV position differs from the target position (See also Figure 16). Unreliable
estimation of the target position especially when flying close to it led to a landing on a predicted target
position different from the real one.



Figure 15: The MAV and target position in 3D for the Experiment 12.

is not aware of any not modeled disturbance acting on the system. Hence, it is unable to counteract any
constant position/velocity error offset which is either the result of an external disturbance or imperfect
system calibration. The controller can only compensate non-persistent external disturbances due to the
feedback on the system. Rejection of constant disturbances would only possible, if these could be estimated
and taken into account from the control model (linear/non linear), which we leave to future work. In order
to make sure that the MAV will remain in a state envelope where the used linear model remains valid, we
use appropriate constraints in the optimization problem. These also guarantee that the MAV operates far
from the gimbal lock (since Euler angles are used for the control formulation).

In all the successful experiments, the MAV managed to land within less than 7.65 s after the first target
detection. The final time in all the experiments did not exceed 30 s, and this is mainly dominated by the
time required for take off and moving to the waypoint. We cannot make a direct comparison with the
performance of the teams who participated in the real challenge, as the final time also depends on when the
target becomes visible for the first time. We can, however, compare our approach with the ones by team
ETH-MAV(Bähnemann et al., 2017) and NimbRo (Beul et al., 2017) which both successfully landed on the
moving target during the MBZIRC competition within 56 s and 32 s, respectively.

• ETH-MAV team used two cascaded EKFs that combine data from an RTK GPS and a Visual Inertial
sensor for the MAV state estimation. A downward looking camera is used for the target detection.
Target tracking and landing is achieved through a non-linear MPC and a path planning algorithm
which also relies on the prior knowledge of the MBZIRC track shape. They also use a Lidar sensor
in order to check the distance between the MAV and the target and trigger the final stage of the
landing procedure.

• NimbRo team used a GPS + IMU fusion algorithm for the MAV state estimation, along with a
fast trajectory planning algorithm. In order to detect and track the target they use two different
cameras. One is looking downwards, while the other forward-downward. The usage of such a camera
configuration, not only robustifies the target detection but also enables faster initial detection of the
moving target. Their MAV was programmed to wait at the waypoint while rotating around its
vertical axis at the same time. Mechanical switches are placed on the legs of the MAV in order to
detect contact and thus successful landing on the moving target.



Both teams followed a mission profile similar to ours with Wait at waypoint – Follow – Final approach and
landing to be the main modes of operation, while the main difference was the active rotating/searching
performed by the NimbRo team MAV which can greatly reduce the time needed for initial target detection.
Our approach does not rely on RTK-GPS making it appropriate for similar tasks in GPS denied environments,
and moreover removes the necessity for a ground station (which wirelessly sends the GPS corrections to the
MAV). We consider our approach to be simple and general enough to be implemented in similar scenarios.
Regarding the software developed, we consider the lack of dynamically feasible trajectories planning and
the usage of a linear MPC to be the main limitation of our approach compared to the above. Regarding
the hardware, we used – in our opinion – the absolute minimum number of sensors/components required for
autonomous navigation. Since we employ only the necessary hardware components, we don’t get the benefits
of more reliable target detection (through use of multiple cameras) and prevention of unsuccessful landing
attempts (through use of extra sensors such as Lidar).

As far as the failed attempts (Experiment 10 and 12) are concerned, both of them seem successful when
we look at the position plots and the final position error after landing. As shown in Figure 16 in both
Experiment 10 and 12 the MAV landed really close to the true target position. We argue that the reason
behind the failed attempts is the quality of the estimated target state especially when the MAV flies really
close to the target. Specifically, in Experiment 12 (Figure 14) the target was pulled sharply in a different
direction while the MAV was in Landing Phase 2. Due to the proximity between the MAV and target,
the latter was partially or completely invisible due to the horizontally mounted downward looking camera
and MAV tilt. Given the average target velocity in these experiments (4.6 m/s and 5.7 m/s) and the fact
that the frame rate of the downward looking camera was 20 hz, the target position between two consecutive
camera frames was changing by 23 cm and 28.5 cm respectively. It becomes clear that in this frame rate
and high target velocity, even one frame of lost tracking can result a failed landing attempt.

Figure 16: The two failed landing attempts. Experiment 12 on the left and Experiment 10 on the right.

Since all the experiments were completed outdoors, we cannot easily provide accurate ground truth for the
target position, but instead we assess the distance from the target once the MAV has landed. We consider
that our approach has two main disadvantages. The first one is unreliable target tracking when the MAV flies
close above the target. This could by either fixed by improving the target tracking when it is partially visible
or by mechanically rotating the downward looking camera such that the target always remains in the field
of view. The second disadvantage is the criterion used for triggering the landing attempt when flying above
the MAV. This depends only on the relative height between the MAV and the target. It would be better
to use a criterion which takes into account the confidence/uncertainty of the estimated target states or use
additional hardware (e.g. Lidar sensor) for more accurate relative height estimation. This would hopefully
lead to higher probability for a successful landing. Nevertheless, we believe to have achieved a respectable
success rate given the minimal hardware/sensor complexity.



9 Conclusion

In this paper, we presented the hardware and software components that were originally developed for our
participation in the MBZIRC Challenge 1. Our system was able to land on a moving target within a range of
speed from 1.3 m/s to 5.0 m/s – which we have thoroughly evaluated in a suite of outdoor experiments pre-
sented in detail to the reader. Employing a carefully engineered visual-inertial odometry system, a 3D target
tracking EKF and MPC position control, we get reasonable tracking accuracy by appropriately penalizing
deviation from a reference position and velocity. The tightly coupled visual-inertial state estimation proved
to be extremely robust while the lack of a GPS sensor in the state estimation pipeline makes it adequate for
indoor or generally GPS denied environments. The whole task was executed fully autonomously, while all
the algorithms were executed on the onboard computer with input data exclusively provided by the onboard
sensors.

In future we aim to improve the tracking performance of the MAV when aggressive maneuvers are commanded
by generating feasible trajectories (based on MAV dynamics) and trajectory control. We aim to extend the
current approach and utilize a non-linear model which captures more accurate dynamics of the MAV. We
can achieve offset-free position control when persistent disturbances such as wind gusts act on the MAV by
properly estimating them online and including their effects in the MAV model. Finally, we have to refine
our target tracking algorithms but also the overall mission strategy in order to improve the robustness of
the system and enable successful landing in more challenging conditions.
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A Target Tracker EKF

In its discrete-time implementation with time increment ∆t, the target tracking process model Equation (6)
becomes

W rT
k = W vWT

k−1∆t, (28)

qWT
k = exp(nrot)⊗ qWT

k−1, (29)

W vWT
k = W vWT

k−1 + nvel, (30)

with the zero-mean independent Gaussian random variables nrot and nvel as a discrete-time approximation
of the corresponding Gaussian white noise processes with variance vector σvel∆t, and σrot∆t, respectively.
The corresponding linearisation xkT = Fdxk−1

T becomes

Fd =

 I3 03×3 I3∆t
03×3 I3 0
03×3 03×3 I3

 , (31)

where I3 denotes a 3 by 3 Identity matrix, and 03×3 denotes a 3 by 3 block of zeros.

As far as the observation of the tth target keypoint is concerned, Equation (9), we need to consider the
undistorted projection model of the downward looking camera, uD(Drt), with argument Drt := [r1, r2, r3]:

uD(Drt) =

[
fu

r1
r3

+ cu
fv

r2
r3

+ cv

]
, (32)



where fu, fv denote the focal lengths in pixels and cu, cv the image centre. Now, linearisation of the
observation model (9) in the sense Ht := ∂ht/∂xT becomes:

Ht =
[
UtTDW Jt 03×3 03×3

]
, (33)

with TDW denoting the pose of the downward looking camera obtained from the Visual-Inertial pose esti-
mation, and Ut the Jacobian of the undistorted fisheye camera projection

Ut(Drt) :=
∂

∂Drt
uD(Drt) =

[
fu 0
0 fv

]
D

[
1
r3

0 − 1

r
2
3

0 1
r3
− 1

r
2
3

]
, (34)

with the Jacobian of Radial-Tangential distortion, D, and, further, with

J =
[
I3 [CWT T rt]

×] , (35)

with [·]× denoting the 3 by 3 cross-product matrix corresponding to its vector argument.

We have now presented all the expressions necessary to apply the well-known discrete-time EKF prediction
equations, as well as the update equations, which we apply for all the visible points sequentially. Note that
the update of the quaternion follows the multiplicative scheme qWT

+ = exp(∆αWT )⊗ qWT
−.



B Supplementary plots of flight experiments

Figure 17: Position and attitude data for Experiment 2. A successful landing was achieved on a moving
target with 1.7 m/s. The MAV landed 4.78 s after the first target detection and 11.8 cm from the target
center.



Figure 18: Position and attitude data for Experiment 3. A successful landing was achieved on a moving
target with 2.0m/s. The MAV landed 5.55 s after the first target detection and 5.2 cm from the target
center.



Figure 19: Position and attitude data for Experiment 4. A successful landing was achieved on a moving
target with 2.0m/s. The MAV landed 7.65 s after the first target detection and 30.6 cm from the target
center.



Figure 20: Position and attitude data for Experiment 5. A successful landing was achieved on a moving
target with 2.3 m/s. The MAV landed 7.12 s after the first target detection and 16.5 cm from the target
center.



Figure 21: Position and attitude data for Experiment 6. A successful landing was achieved on a moving
target with 2.4 m/s. The MAV landed 5.64 s after the first target detection and 6.6 cm from the target
center.



Figure 22: Position and attitude data for Experiment 7. A successful landing was achieved on a moving
target with 3.5 m/s. The MAV landed 4.97 s after the first target detection and 30.2 cm from the target
center.



Figure 23: Position and attitude data for Experiment 8. A successful landing was achieved on a moving
target with 3.8 m/s. The MAV landed 5.91 s after the first target detection and 18.6 cm from the target
center.



Figure 24: Position and attitude data for Experiment 9. A successful landing was achieved on a moving
target with 4.0 m/s. The MAV landed 7.47s after the first target detection and 15.6cm from the target
center.



Figure 25: Position and attitude data for Experiment 10 with a failed landing attempt on a moving target
with 4.6 m/s. Although that the estimated MAV final position is 29.8 cm away from the target center, the
real one was significantly different than the target position.
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