3,257 research outputs found

    Modelling and Verification of Multiple UAV Mission Using SMV

    Full text link
    Model checking has been used to verify the correctness of digital circuits, security protocols, communication protocols, as they can be modelled by means of finite state transition model. However, modelling the behaviour of hybrid systems like UAVs in a Kripke model is challenging. This work is aimed at capturing the behaviour of an UAV performing cooperative search mission into a Kripke model, so as to verify it against the temporal properties expressed in Computation Tree Logic (CTL). SMV model checker is used for the purpose of model checking

    Aerial navigation in obstructed environments with embedded nonlinear model predictive control

    Full text link
    We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs
    corecore