4 research outputs found

    Macroscopic Traļ¬ƒc Model Validation of Large Networks and the Introduction of a Gradient Based Solver

    Get PDF
    Traļ¬ƒc models are important for the evaluation of various Intelligent Transport Systems and the development of new traļ¬ƒc infrastructure. In order for this to be done accurately and with conļ¬dence the correct parameter values of the model must be identiļ¬ed. The focus of this thesis is the identiļ¬cation and conļ¬rmation of these parameters, which is model validation. Validation is performed on two diļ¬€erent models; the ļ¬rst-order CTM and the second-order METANET model. The CTM is validated for two UK sites of 7.8 and 21.9 km and METANET for the same two sites using a variety of meta-heuristic algorithms. This is done using a newly developed method to allow for the optimisation method to determine the number of parameters to be used and the spatial extent of their application. This allows for the removal of expert engineering knowledge and ad-hoc decomposition of networks. This thesis also develops a methodology by use of Automatic Diļ¬€erentiation to allow gradient based optimisation to be used. This approach successfully validated the METANET model for the 21.9 km site and also a large network surrounding the city of Manchester of 186.9 km. This proves that gradient based optimisation can be used for the macroscopic traļ¬ƒc model validation problem. In fact the performance of the developed gradient method is superior to the meta-heuristics tested for the same sites. The methodology deļ¬ned also allows for more data to be obtained from the model such as its Jacobian and the sensitivity of the objective function being used relative to the individual parameters. Space-Time contour plots of this newly acquired data show structures and shock waves that are not visible in the mean speed contour diagrams

    Autonomic Systems Design for ITS Applications

    No full text
    This paper discusses a systems design approach inspired from the autonomic nervous system for ITS applications. This is done not with reference to the employed computing system, but to the requirements of traffic engineering applications. It is argued that the design and development of autonomic traffic management systems must identify the control loop that needs to be endowed with autonomic properties and subsequently use this framework for defining a desired set of self-* properties. A macroscopic network modelling application is considered for showing how autonomic systems design can be used for defining and obtaining self-* properties, with particular emphasis given in self-optimisation
    corecore