50 research outputs found

    Run-time connector synthesis for autonomic systems of systems

    Get PDF
    A key objective of autonomic computing is to reduce the cost and expertise required for the management of complex IT systems. As a growing number of these systems are implemented as hierarchies or federations of lower-level systems, techniques that support the development of autonomic systems of systems are required. This article introduces one such technique, which involves the run-time synthesis of autonomic system connectors. These connectors are specified by means of a new type of autonomic computing policy termed a resource definition policy, and enable the dynamic realisation of collections of collaborating autonomic systems, as envisaged by the original vision of autonomic computing. We propose a framework for the formal specification of autonomic computing policies, and use it to define the new policy type and to describe its application to the development of autonomic system of systems. To validate the approach, we present a sample data-centre application that was built using connectors synthesised from resource-definition policies

    Autonomic management of multiple non-functional concerns in behavioural skeletons

    Full text link
    We introduce and address the problem of concurrent autonomic management of different non-functional concerns in parallel applications build as a hierarchical composition of behavioural skeletons. We first define the problems arising when multiple concerns are dealt with by independent managers, then we propose a methodology supporting coordinated management, and finally we discuss how autonomic management of multiple concerns may be implemented in a typical use case. The paper concludes with an outline of the challenges involved in realizing the proposed methodology on distributed target architectures such as clusters and grids. Being based on the behavioural skeleton concept proposed in the CoreGRID GCM, it is anticipated that the methodology will be readily integrated into the current reference implementation of GCM based on Java ProActive and running on top of major grid middleware systems.Comment: 20 pages + cover pag

    Reconfigurable service-oriented architecture for autonomic computing

    Get PDF
    Almost a decade has passed since the objectives and benefits of autonomic computing were stated, yet even the latest system designs and deployments exhibit only limited and isolated elements of autonomic functionality. In previous work, we identified several of the key challenges behind this delay in the adoption of autonomic solutions, and proposed a generic framework for the development of autonomic computing systems that overcomes these challenges. In this article, we describe how existing technologies and standards can be used to realise our autonomic computing framework, and present its implementation as a service-oriented architecture. We show how this implementation employs a combination of automated code generation, model-based and object-oriented development techniques to ensure that the framework can be used to add autonomic capabilities to systems whose characteristics are unknown until runtime. We then use our framework to develop two autonomic solutions for the allocation of server capacity to services of different priorities and variable workloads, thus illustrating its application in the context of a typical data-centre resource management problem

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Software engineering techniques for the development of systems of systems

    Get PDF
    This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework

    An Autonomic Computing System based on a Rule-based Policy Engine and Artificial Immune Systems

    Get PDF
    Autonomic computing systems arose from the notion that complex computing systems should have properties like those of the autonomic nervous system, which coordinates bodily functions and allows attention to be directed to more pressing needs. An autonomic system allows the system administrator to specify high-level policies, which the system maintains without administrator assistance. Policy enforcement can be done with a rule based system such as Jess (a java expert system shell). An autonomic system must be able to monitor itself, and this is often a limiting factor. We are developing an automatic system that has a policy engine and uses Artificial Immune Systems (AISs) to sense its environment and to monitor its components and performance. AISs emulate the natural immune system to defend the body against external malicious entities. The proposed system monitors itself without human intervention and thus addresses the problem of systems complexity

    Sustainable and Autonomic Space Exploration Missions

    Get PDF
    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies
    corecore