2 research outputs found

    Efficient and Flexible Search in Large Scale Distributed Systems

    Get PDF
    Peer-to-peer (P2P) technology has triggered a wide range of distributed systems beyond simple file-sharing. Distributed XML databases, distributed computing, server-less web publishing and networked resource/service sharing are only a few to name. Despite of the diversity in applications, these systems share a common problem regarding searching and discovery of information. This commonality stems from the transitory nodes population and volatile information content in the participating nodes. In such dynamic environment, users are not expected to have the exact information about the available objects in the system. Rather queries are based on partial information, which requires the search mechanism to be flexible. On the other hand, to scale with network size the search mechanism is required to be bandwidth efficient. Since the advent of P2P technology experts from industry and academia have proposed a number of search techniques - none of which is able to provide satisfactory solution to the conflicting requirements of search efficiency and flexibility. Structured search techniques, mostly Distributed Hash Table (DHT)-based, are bandwidth efficient while semi(un)-structured techniques are flexible. But, neither achieves both ends. This thesis defines the Distributed Pattern Matching (DPM) problem. The DPM problem is to discover a pattern (\ie bit-vector) using any subset of its 1-bits, under the assumption that the patterns are distributed across a large population of networked nodes. Search problem in many distributed systems can be reduced to the DPM problem. This thesis also presents two distinct search mechanisms, named Distributed Pattern Matching System (DPMS) and Plexus, for solving the DPM problem. DPMS is a semi-structured, hierarchical architecture aiming to discover a predefined number of matches by visiting a small number of nodes. Plexus, on the other hand, is a structured search mechanism based on the theory of Error Correcting Code (ECC). The design goal behind Plexus is to discover all the matches by visiting a reasonable number of nodes

    Peer-to-Peer Bartering: Swapping Amongst Self-interested Agents

    Get PDF
    Large--scale distributed environments can be seen as a conflict between the selfish aims of the participants and the group welfare of the population as a whole. In order to regulate the behavior of the participants it is often necessary to introduce mechanisms that provide incentives and stimulate cooperative behavior in order to mitigate for the resultant potentially undesirable availability outcomes which could arise from individual actions.The history of economics contains a wide variety of incentive patterns for cooperation. In this thesis, we adopt bartering incentive pattern as an attractive foundation for a simple and robust form of exchange to re-allocate resources. While bartering is arguably the world's oldest form of trade, there are still many instances where it surprises us. The success and survivability of the barter mechanisms adds to its attractiveness as a model to study.In this thesis we have derived three relevant scenarios where a bartering approach is applied. Starting from a common model of bartering: - We show the price to be paid for dealing with selfish agents in a bartering environment, as well as the impact on performance parameters such as topology and disclosed information.- We show how agents, by means of bartering, can achieve gains in goods without altruistic agents needing to be present.- We apply a bartering--based approach to a real application, the directory services.The core of this research is the analysis of bartering in the Internet Age. In previous times, usually economies dominated by bartering have suffered from high transaction costs (i.e. the improbability of the wants, needs that cause a transaction occurring at the same time and place). Nowadays, the world has a global system of interconnected computer networks called Internet. This interconnected world has the ability to overcome many challenges of the previous times. This thesis analysis the oldest system of trade within the context of this new paradigm. In this thesis we aim is to show thatbartering has a great potential, but there are many challenges that can affect the realistic application of bartering that should be studied.The purpose of this thesis has been to investigate resource allocation using bartering mechanism, with particular emphasis on applications in largescale distributed systems without the presence of altruistic participants in the environment.Throughout the research presented in this thesis we have contributed evidence that supports the leitmotif that best summarizes our work: investigation interactions amongst selfish, rational, and autonomous agents with incomplete information, each seeking to maximize its expected utility by means of bartering. We concentrate on three scenarios: one theoretical, a case of use, and finally a real application. All of these scenarios are used for evaluating bartering. Each scenario starts from a common origin, but each of them have their own unique features.The final conclusion is that bartering is still relevant in the modern world
    corecore