4 research outputs found

    Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work

    Get PDF
    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of achieving significant computational capabilities for high-performance computing applications, while simultaneously affording the ability to. increase that capability simply by adding more (inexpensive) processors. However, the task of manually managing and con.guring a cluster quickly becomes impossible as the cluster grows in size. Autonomic computing is a relatively new approach to managing complex systems that can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Automatic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management

    Birds of a Feather Session: “Autonomic Computing: Panacea or Poppycock?”

    Get PDF

    Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity

    Get PDF
    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring

    Coordinated Autonomic Managers for Energy Efficient Date Centers

    Get PDF
    The complexity of today’s data centers has led researchers to investigate ways in which autonomic methods can be used for data center management. Autonomic managers try to monitor and manage resources to ensure that the components they manage are self-configuring, self-optimizing, self-healing and self-protecting (so called “self-*” properties). In this research, we consider autonomic management systems for data centers with a particular focus on making data centers more energy-aware. In particular, we consider a policy based, multi-manager autonomic management systems for energy aware data centers. Our focus is on defining the foundations – the core concepts, entities, relationships and algorithms - for autonomic management systems capable of supporting a range of management configurations. Central to our approach is the notion of a “topology” of autonomic managers that when instantiated can support a range of different configurations of autonomic managers and communication among them. The notion of “policy” is broadened to enable some autonomic managers to have more direct control over the behavior of other managers through changes in policies. The ultimate goal is to create a management framework that would allow the data center administrator to a) define managed objects, their corresponding managers, management system topology, and policies to meet their operation needs and b) rely on the management system to maintain itself automatically. A data center simulator that computes its energy consumption (computing and cooling) at any given time is implemented to evaluate the impact of different management scenarios. The management system is evaluated with different management scenarios in our simulated data center
    corecore