1,583 research outputs found

    The classification problem for automorphisms of C*-algebras

    Get PDF
    We present an overview of the recent developments in the study of the classification problem for automorphisms of C*-algebras from the perspective of Borel complexity theory.Comment: 21 page

    Black Box White Arrow

    Full text link
    The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting (P)SLn(Fq){\rm (P)SL}_n(\mathbb{F}_q). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting SL2(2n){\rm SL}_2(2^n). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.Comment: arXiv admin note: substantial text overlap with arXiv:1308.248

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    Testing isomorphism of graded algebras

    Get PDF
    We present a new algorithm to decide isomorphism between finite graded algebras. For a broad class of nilpotent Lie algebras, we demonstrate that it runs in time polynomial in the order of the input algebras. We introduce heuristics that often dramatically improve the performance of the algorithm and report on an implementation in Magma

    Introduction to Sofic and Hyperlinear groups and Connes' embedding conjecture

    Full text link
    Sofic and hyperlinear groups are the countable discrete groups that can be approximated in a suitable sense by finite symmetric groups and groups of unitary matrices. These notions turned out to be very deep and fruitful, and stimulated in the last 15 years an impressive amount of research touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and more recently even quantum information theory. Several longstanding conjectures that are still open for arbitrary groups were settled in the case of sofic or hyperlinear groups. These achievements aroused the interest of an increasing number of researchers into some fundamental questions about the nature of these approximation properties. Many of such problems are to this day still open such as, outstandingly: Is there any countable discrete group that is not sofic or hyperlinear? A similar pattern can be found in the study of II_1 factors. In this case the famous conjecture due to Connes (commonly known as the Connes embedding conjecture) that any II_1 factor can be approximated in a suitable sense by matrix algebras inspired several breakthroughs in the understanding of II_1 factors, and stands out today as one of the major open problems in the field. The aim of these notes is to present in a uniform and accessible way some cornerstone results in the study of sofic and hyperlinear groups and the Connes embedding conjecture. The presentation is nonetheless self contained and accessible to any student or researcher with a graduate level mathematical background. An appendix by V. Pestov provides a pedagogically new introduction to the concepts of ultrafilters, ultralimits, and ultraproducts for those mathematicians who are not familiar with them, and aiming to make these concepts appear very natural.Comment: 157 pages, with an appendix by Vladimir Pesto

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page
    corecore