80 research outputs found

    Systemdienstleistungserbringung durch intelligente Gebäude

    Get PDF
    Die vorliegende Arbeit analysiert die Auswirkungen intelligenter Gebäude auf Niederspannungsnetze und nutzt diese um im Kontext einer technisch, topologisch und koordinativ ausgestalteten Netzampel ein Portfolio an Systemdienstleistungen mittels eines regionalen Energiemanagementsystems zu erbringen. Dieses wird mittels Referenzszenarien sowie unter Verwendung eines Software-in-a-Hardware-Loop-Aufbaus und Co-Simulation evaluiert und die Netzdienlichkeit intelligenter Gebäude demonstriert

    Jahresbericht 2021: Der Lehrstühle für Elektrische Antriebssysteme, Elektrische Netze und Erneuerbare Energie, Elektromagnetische Verträglichkeit, Leistungselektronik

    Get PDF
    Auch 2021 möchten wir Ihnen wieder unseren Jahresbericht überreichen, mit dem wir in gewohnter Weise über die neuesten Entwicklungen, Lehrveranstaltungen und Forschungsaktivitäten an den Lehrstühlen für „Elektrische Antriebssysteme“, „Elektrische Netze und Erneuerbare Energie“, „Leistungselektronik“ und „Elektromagnetische Verträglichkeit“ informieren

    Systemdienstleistungserbringung durch intelligente Gebäude

    Get PDF
    Within the ongoing transition of energy systems, new technologies are integrated into electrical distribution systems—e. g. distributed generation, electrical storage, electric vehicles and automated building energy management—which transform buildings into actively participating components inside the grid. This thesis analyses the influences of those intelligent buildings’ capabilities of optimizing their in-house energy flows on low-voltage grids and discusses the usability of those capabilities to provide system services. In order to minimize the limitations which arise for the economic acting on energy markets for the inhabitants of such buildings, the traffic light concept is shaped as an approach to provide necessary needed system services. Firstly, a technical traffic light is introduced to determine critical situations in the grid. Secondly, a topological traffic light identifies active components that can reasonably participate in the clearance of a critical situation. Thirdly, aspects of coordination by the traffic light are tackled by a closed-loop feedback mechanism that controls utility equipment and intelligent buildings by utilizing a two-staged mechanism for demand response. The three parts of the proposed traffic light approach are implemented in a Regional Energy Management System that utilizes a proposed Extended Generic Observer/Controller-Architecture. For a close-to-reality evaluation three reference grids for a rural, village, and suburban residential low voltage grid are derived from literature as well as three scenarios for the distribution of active components. In particular distributed generation, electrical storage and electric vehicles. The simulation of intelligent buildings, utility equipment, and the low voltage grid as well as the Regional Energy Management System are implemented in a Co-Simulation environment that extends the Organic Smart Home to a microgrid simulation. Furthermore, this simulation is extended towards a Software-in-a-Hardware-Loop-Environment comprising the Co-Simulation and the KIT Energy Smart Home Lab as a real intelligent building, to comply with the necessity of evaluating the Regional Energy Management System with real hardware. Here, a loose coupling of software and hardware components is established by using event-based communication schemes utilizing a message bus and an artificial mains is used to align the environmental conditions between simulation and real building. The capabilities of the Regional Energy Management System to stabilize low voltage systems, especially in future scenarios, are investigated in simulation studies and its operation is successfully demonstrated in the presented Software-in-a-Hardware-Loop-Environment during a six-day test phase in the real intelligent building
    corecore