2 research outputs found

    Slide-Down Prevention for Wheeled Mobile Robots on Slopes

    Get PDF
    Wheeled mobile robots on inclined terrain can slide down due to loss of traction and gravity. This type of instability, which is different from tip-over, can provoke uncontrolled motion or get the vehicle stuck. This paper proposes slide-down prevention by real-time computation of a straightforward stability margin for a given ground-wheel friction coefficient. This margin is applied to the case study of Lazaro, a hybrid skid-steer mobile robot with caster-leg mechanism that allows tests with four or five wheel contact points. Experimental results for both ADAMS simulations and the actual vehicle demonstrate the effectiveness of the proposed approach.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Lázaro: a mobile robot with an arm developed to contact with the ground

    Full text link
    [EN] This paper aims to describe Lázaro, which is a small mobile robot that has an arm designed especially to provide an additional contact point with the ground that can be used to improve the tipover stability and to overcome obstacles. Specifically, the description of the mechanical structure and electronic components for perception, communication and control is discussed. Subsequently, the operating characteristics of the robot are reviewed in terms of kinematics, control architecture, operating modes and interface. Finally, a description of some performance tests is presented.[ES] Este artículo tiene por objetivo describir a Lázaro, el cual es un pequeño robot móvil que posee un brazo diseñado especialmente para propiciar un punto adicional de contacto con el suelo que puede utilizarse para mejorar la estabilidad al vuelco y superar obstáculos. Específicamente, se aborda la descripción de la estructura mecánica así como los componentes electrónicos destinados a percepción, comunicación y control. Posteriormente, se revisan las características de funcionamiento de este robot, en cuanto a su cinemática, arquitectura de control, modos de operación e interface. Finalmente, se hace una descripción de algunas pruebas de funcionamiento.Este trabajo ha sido financiado parcialmente por el Decanato de Investigación de la Universidad Nacional Experimental del Táchira con el proyecto 01-020-2010. Además, por el proyecto español DPI 2015-65186-R de la CICYT, el proyecto andaluz PE2010 TEP-6101 y la Asociación Universitaria Iberoamericana de Postgrado (AUIP). .García, JM.; Medina, IJ.; Martínez, JL.; García Cerezo, A. (2017). Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática industrial. 14(2):174-183. https://doi.org/10.1016/j.riai.2016.09.012OJS174183142Barrientos, A., Peñín, L., Balaguer, C., & Aracil, R., 1996. Fundamentos de robótica. McGraw-Hill. Madrid.Ben-tzvi, P., Goldenberg, A., & Zu, J., 2008. Design, simulations and optimization of a tracked mobile robot manipulator with hybrid locomotion and manipulation capabilities. In: IEEE International Conference on Robotics and Automation. Pasadena, USA. pp. 2307-2312.Ben-Tzvi, P., Ito, S., & Goldenberg, A., 2009. A mobile robot with autonomous climbing and descending of stairs. Robotica 27, 171-188.Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., et al. (2010). An active suspension system for lunar crew mobility. In: IEEE Aerospace Conference. Big Sky, USA. pp. 1-9.Casper, J., & Murphy, R., 2003. Human - robot interactions during the robotassisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man and Cybernetics 33, 367-385.Chiu, Y., Shiroma, N., Igarashi, H., Sato, N., Inami, M., & Matsuno, F., 2005. Fuma: Environment information gathering wheeled rescue robot with oneDOF arm. In: IEEE International Workshop on Safety, Security and Rescue Robotics. Kobe, Japan. pp. 81-86.Choi, K., Jeong, H., Hyun, K., Choi, H., & Kwak, Y., 2007. Obstacle negotiation for the rescue robot with variable single-tracked mechanism. In: IEEE/ASME international conference on Advanced intelligent mechatronics. Zurich, Switzerland. pp. 1-6.Cordes, F., Dettmann, A., & Kirchner, F., 2011. Locomotion modes for a hybrid wheeled-leg planetary rover. In: IEEE international conference on robotics and biomimetics. Phuket, Thailand. pp. 2586-2592.Feng, Q., Wang, X., Zheng, W., Qiu, Q., & Jiang, K., 2012. New strawberry harvesting robot for elevated-trough culture. International Journal of Agricultural and Biological Engineering 5, 1-8.García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2015a. Steerability analysis on slopes of a mobile robot with a ground contact arm. In: 23rd Mediterranean Conference on Control and Automation. Torremolinos, Spain. pp. 267-272.García, J. M., Medina, I., Cerezo, A. G., & Linares, A., 2015b. Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions 13, 3228-3234.García-Cerezo, A., Mandow, A., Martínez, J. L., Gómez-de-Gabriel, J., Morales, J., Cruz, A., et al., 2007. Development of Alacrane: a mobile robotic assitance for exploration and rescue missions. In: IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy. pp. 1-6.Guarnieri, M., Debenest, P., Inoh, P., Fukushima, E., & Hirose, S., 2004. Development of Helios VII: an arm-equipped tracked vehicle for search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan. pp. 39-45.Guarnieri, M., Kurazume, R., Masuda, H., Inoh, T., Takita, K., Debenest, P., et al., 2009. Helios system: a team of tracked robots for special urban search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA. pp. 2795-2800.Guarnieri, M., Takao, I., Debenest, P., Takita, K., Fukushima, E., & Hirose, S., 2008. Helios IX tracked vehicle for urban search and rescue operations: mechanical design and first tests. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France. pp. 1612-1617.Hurel, J., Mandow, A., & García-Cerezo, A., 2013. Los sistemas de suspensión activa y semiactiva: una revisión. Revista Iberoamericana de Automática e Informática Industrial 10, 121-132.Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P., 2003. Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots 14, 5-16.Jardón, A., Giménez, A., Correal, R., Martinez, S., & Balaguer, C., 2008. Asibot: Robot portátil de asistencia a discapacitados. concepto, arquitectura de control y evaluación clínica. Revista Iberoamericana de Automática e Informática Industrial 5, 48-59.Lindemann, R., Bickler, D., Harrington, B., Ortiz, G., & Voorhees, C., 2006. Mars exploration rover mobility development. IEEE Robotics & Automation Magazine 13, 19-26.Mandow, A., Martínez, J. L., Morales, J., Blanco, J. L., García-Cerezo, A., & González, J., 2007. Experimental kinematics for wheeled skid-steer mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA. pp. 1222-1227.Matsuno, F., & Tadokoro, S., 2004. Rescue robots and systems in Japan. In: IEEE International Conference on Robotics and Biomimetics. Shenyang, China. pp. 12-20.Meghdari, A., Naderi, D., & Eslami, S., 2006. Optimal stability of a redundant mobile manipulator via genetic algorithm. Robotica 24, 739-743.Moosavian, S., Semsarilar, H., & Kalantari, A., 2006. Design and manufacturing of a mobile rescue robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. pp. 3982- 3987).Morales, J., Martínez, J. L., Mandow, A., Serón, J., García-Cerezo, A., & Pequeño-Boter, A., 2009. Center of gravity estimation and control for a field mobile robot with a heavy manipulator. In: IEEE International Conference on Mechatronics. Málaga, Spain. pp. 1-6.Ollero, A., Mandow, A., Muñoz, V., & Gómez de Gabriel, J., 1994. Control architecture for mobile robot operation and navigation. Robotics & Computer- Integrated Manufacturing 11, 259-269.Serón, J., Martínez, J. L., Mandow, A., Reina, A. J., Morales, J., & GarcíaCerezo, A., 2014. Automation of the arm-aided climbing maneuver for tracked mobile manipulators. IEEE Transactions on Industrial Electronics 61, 3638-3647.Siegwart, R., Lamon, P., Estier, T., Lauria, M., & Piguet, R., 2002. Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems 20, 151-162.Stein, M., & Paul, R., 1994. Operator interaction, for time-delayed teleoperation, with a behavior-based controller. In: IEEE International Conference on Robotics and Automation. San Diego, USA. pp. 231-236.Suthakorn, J., Shah, S., Jantarajit, S., Onprasert, W., Saensupo, W., Saeung, S., et al., 2009. On the design and development of a rough terrain robot for rescue missions. In: IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand. pp. 1830-1835.Vuković, N., & Miljković, Z., 2009. New hybrid control architecture for intelligent mobile robot navigation in a manufacturing environment. Faculty of Mechanical Engineering Transactions 37, 9-18
    corecore