8,002 research outputs found

    Automation In The Design Of Asynchronous Sequential Circuits

    Get PDF
    Sequential switching circuits are commonly classified as being either synchronous or asynchronous. Clock pulses synchronize the operations of the synchronous circuit. The operation of an asynchronous circuit is usually assumed to be independent of such clocks. The operating speed of an asynchronous circuit is thus limited only by basic device speed. One disadvantage of asynchronous circuit design has been the complexity of the synthesis procedures for large circuits

    A Simplification Heuristic For Large Flow Tables

    Get PDF
    Flow tables specifying large asynchronous sequential circuits often contain more internal states than are required to specify desired circuit behavior. Known minimization techniques appear unsuited for reduction of such large (rows X columns \u3e 250) flow tables, because of excessive computation and intermediate data requirements for problems of this size. The algorithm described here is intended to rapidly produce a simplified-but in general non-minimal-flow table. It is most economical when applied to extremely large tables and was devised primarily for automated design applications. The procedure has been programmed in PL/1 and has been incorporated into an asynchronous sequential circuit design automation system developed at the University of Missouri-Rolla. Typical flow table simplification times obtained using the program are cited. In one test re-duction of a 217 row x 8 column table to 39x8 required about 2.6 minutes (the minimum table in this case was known to be 23x8)

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Adaptive Latency Insensitive Protocols

    Get PDF
    Latency-insensitive design copes with excessive delays typical of global wires in current and future IC technologies. It achieves its goal via encapsulation of synchronous logic blocks in wrappers that communicate through a latency-insensitive protocol (LIP) and pipelined interconnects. Previously proposed solutions suffer from an excessive performance penalty in terms of throughput or from a lack of generality. This article presents an adaptive LIP that outperforms previous static implementations, as demonstrated by two relevant cases — a microprocessor and an MPEG encoder — whose components we made insensitive to the latencies of their interconnections through a newly developed wrapper. We also present an informal exposition of the theoretical basis of adaptive LIPs, as well as implementation detail

    Optimisation and parallelism in synchronous digital circuit simulators

    Get PDF
    Digital circuit simulation often requires a large amount of computation, resulting in long run times. We consider several techniques for optimising a brute force synchronous circuit simulator: an algorithm using an event queue that avoids recalculating quiescent parts of the circuit, a marking algorithm that is similar to the event queue but that avoids a central data structure, and a lazy algorithm that avoids calculating signals whose values are not needed. Two target architectures for the simulator are used: a sequential CPU, and a parallel GPGPU. The interactions between the different optimisations are discussed, and the performance is measured while the algorithms are simulating a simple but realistic scalable circuit
    corecore