
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

30 Apr 1968

Automation In The Design Of Asynchronous Sequential Circuits Automation In The Design Of Asynchronous Sequential Circuits

Richard T. Smith
Missouri University of Science and Technology

James H. Tracey
Missouri University of Science and Technology

W. L. Schoeffel

G. K. Maki

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
R. T. Smith et al., "Automation In The Design Of Asynchronous Sequential Circuits," AFIPS 1968
Conference Proceedings - Spring Joint Computer Conference, pp. 55 - 60, Associatoin for Computing
Machinery, Apr 1968.
The definitive version is available at https://doi.org/10.1145/1468075.1468084

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1468075.1468084
mailto:scholarsmine@mst.edu

Automation in the design of asynchronous
sequential circuits*

by R. J. SMITH, II, J. H. TRACEY, W. L. SCHOEFFEL and G. K. MAKI
University of Missouri at Rolla
Rolla, Missouri

INTRODUCTION
Sequential switching circuits are commonly classi­
fied as being either synchronous or asynchronous.
Clock pulses synchronize the operations of the syn­
chronous circuit. The operation of an asynchronous
circuit is usually assumed to be independent of such
clocks. The operating speed of an asynchronous cir­
cuit is thus limited only by basic device speed. One
disadvantage of asynchronous circuit design has been
the complexity of the synthesis procedures for large
circuits.

This paper describes a computer program1*2 which
automatically generates the complete set of design
equations for asynchronous sequential circuits. Many
of the algorithms employed are new and have been
shown to be much more practical than classical tech­
niques for the synthesis of large circuits.

Minimum or near-minimum variable internal state
assignments are generated using two of the Tracey
algorithms.3 An evaluation procedure predicts which
of several codes generated will most likely yield the
least complex design equations. Next-state equations,
including don't-cares, are then produced without con­
structing transition tables. Output-state equations are
also generated. Finally, simplified normal form design
equations containing no static hazards are produced.
The program is capable of designing circuits much too
large to design manually.

The operation of a sequential circuit is often
described by means of a flow table.4 An example is
shown in Figure 1. The columns of a flow table repre­
sent input states, while the rows represent internal
states assumed by the circuit. Each flow table entry
specifies the next internal state and output which
result from the given input and internal states. When
the next-state equals the present state, that state is
said to be stable and is customarily circled. Unstable

•The research reported in this paper was supported in part by
the National Science Foundation through Grant GK-820.

states correspond to transitions within a flow table
column.

i, k h

©/I0
3

—

4
®/0l ®/00

I
1

®/l l
®/IO

4
®/0l

-

@/00
2

Figure 1 — Flow table

A sequential circuit is operating in fundamental
mode if the inputs are never changed unless the cir­
cuit is stable internally. If, in addition, each unstable
state leads directly to a stable state, the circuit is
said to be operating in normal fundamental mode. The
computer program described in this paper automati­
cally generates design equations for asynchronous
sequential circuits operating in the normal funda­
mental mode. Circuit specifications are conveniently
input in flow table form. Input state binary codes are
specified by the program user. A summary flow chart
of the procedure followed by the synthesis algorithm
is shown in Figure 2.

55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1468075.1468084&domain=pdf&date_stamp=1968-04-30

56 Spring Joint Computer Conference, 1968

The program used to implement the design proce­
dure suggested above is written in PL/1. This lan­
guage was chosen because of its bit-string data for­
mat, Boolean operations, and the controllable storage
feature. The program consists of about 2000 PL/1
statements divided into 8 subroutines. The system
was designed to run on an IBM 360/40 but could be
run on a somewhat smaller machine.

Figure 2—The programmed synthesis algorithm

State assignment algorithm

The internal state assignment procedures employed
are a modification of those described by Tracey.3

Either completely or partially simplified flow tables
may be input to the program. Flow table simplifica­
tion is not presently included in the synthesis proce­
dure, but will be included in a later version of the pro­
gram.

The Tracey state assignment algorithms are based
oh the following theorem which is reproduced with­
out proof. "A row assignment to a flow table which
allots one internal state per row is satisfactory for the
realization of normal fundamental mode flow tables
without critical races if and only if for every transition
(Si5 Sj), a) if (Sm, SR) is another transition in the same
column, then at least one internal state variable parti­
tions the pair {Si, Sj} and the pair {Sm, Sn} into sepa­
rate blocks; b) if Sk is a stable state not involved in
any transitions in the column, then at least one internal
state variable partitions the pair {Si? SJ and the state
Sk into separate blocks; and c) for i ^ j , Si and Sj are
in separate blocks of at least one internal state varia­
ble partition."

Constraints generated as a result of applying the
above theorem may be listed in Boolean matrix form,
with each row corresponding to a partially specified
state variable. Consider, for example, the constraint
list generated by the flow table of Figure 1. The con­
straints shown below are generated on a per-column
basis in satisfying theorem parts a) and b):

Constraint
List

(14; 23)
(15; 23)
(3; 24)
(24; 5)
(25; 14)
(1 . A\

Boolean
Matrix
12345
0110-
011-0
-101-
-0-01
10-10
A 1
\t— i -

The program forms all partitions associated with the
topmost stable state of column 1, then all irredundant
partitions due to the second state, and continues until
all stable states in the column have been examined.
The process is then repeated for the remaining col-
ums.

Note that for the above example, none of the col­
umn-generated constraints partitioned flow table rows
1 and 4; the constraint (1;4) was thus included in the
list to satisfy theorem part c). The program checks all
pairs of flow table rows, and generates additional par­
titions as required by c).

The state assignment problem now becomes one of
finding a minimum number of internal state variables
satisfying all of the constraints just generated. This
problem has been shown to be analogous to the gener­
ation of maximal compatibles by the Paull-Unger al­
gorithms for flow table simplification. A set of com­
pletely specified state variables, at least one of which
covers each constraint, corresponds to the maximal
compatibles. These completely specified state varia­
bles will be referred to here, therefore, as maximal
constraints. The selection of a minimum number of
maximal constraints, and hence minimum number of
internal state variables is similar to the covering prob­
lem in the Quine-McCluskey method for simplifying
Boolean equations. Details of these algorithms are
available in the literature and will not be given here.3,5'6

As in the Paull-Unger Method A,5 maximal con­
straint generation may begin with the assumption that
no constraints exist. Then each constraint is examined
for contradictions to this assumption and all implied
partitions are generated. After each constraint has
been so examined, one is left with the set of maximal
constraints. In another approach, Paull-Unger Meth­
od B, one begins with the list of constraints and seeks

Automation in Design of Asynchronous Sequential Circuits 57

to enlarge each through the complete specification of
the corresponding state variable until all enlarge­
ments are found that cover one or more of the original
constraints. Both procedures were programmed and
the second was found to be nearly a factor of two fas­
ter than the first in this application.

As stated previously, the selecting of a minimum
number of maximal constraints is similar to the cov­
ering problem in Boolean equation simplification. A
branching method has been used which is capable of
producing ail irredundant minimum-variable assign­
ments. Operating speed of this algorithm is increased
by reorganization of the maximal constraint list, based
on the idea that those maximal constraints including
the largest number of the original constraints would
most likely be members of a minimal cover. Internal
representation of each maximal constraint is restruc­
tured in such a manner that the covering problem can­
not be further simplified using column dominance
techniques.

It is obvious that either of the two assignments be­
low satisfy all of the constraints shown above:

Assignment #1

1 2 3 4 5
yt 0 1 1 0 0
y2 0 1 1 0 1
y3 0 1 0 1 0

Assignment #2

1 2 3 4 5
yx 0 1 1 0 1
y2 0 1 1 1 0
y3 0 1 0 1 0

Furthermore, these are the only two significantly
different minimum assignments which successfully
code the Figure 1 flow table.

It has been found that even with certain look-ahead
provisions in the branching routine, generation of
minimum variable assignments becomes a time-con­
suming problem for typical flow tables of 12 rows or
more. A second and much faster algorithm has been
programmed. It is an approximate method, and gener­
ates near-minimum variable codes.

The fast algorithm reduces the Boolean matrix cor­
responding to the maximal constraints through the
use of an approximate reduction technique. A con­
straint is constructed which seems to include a large
number of matrix rows. The included matrix rows are
then removed. This process is then continued until
all rows of the original matrix are included in at least
one of the generated constraints. This reduced matrix
corresponds to a near-minimum variable state assign­
ment.

The fast Boolean matrix reduction program usually
produces satisfactory assignments having less than
1V3 times the minimum number of variables. Assign­
ment generation times for large flow tables may be re-

II

1 0 1
1 0 0
0 0 1
0 1 1

1 0 1
1 1 1
0 0 1
1 1 0

2
3

4
5

-s

duced by two orders of magnitude using this approxi­
mate procedure. Near-minimal assignments have been
efficiently generated for flow tables having up to 75
specified next-state entries and 150 constraints with
approximately 15 minutes computer time on an IBM
360/50. Many satisfactory assignments are often gen­
erated. One of these may be selected by a test routine
or chosen by the designer. The test routine, to be
discussed below, chooses a "good" assignment for
reduced hardware realization.

Design equations

As the example above illustrates, the code gener­
ating algorithms frequently produce several satisfac­
tory assignments. Generated codes may be evaluated
by a procedure due to Maki,7 which selects that assign­
ment most likely to have simple next-state equations.
Consider, for example, the assignments and next-state
equations shown in Figure 3. Note that the next-state
equations for column Ix Assignment #1 are much less
complex than those for Assignment #2.

Assignment*I Assignment#2

Y| V2 V3 V| V2 V3
0 0 0 0 0 0

2
2
4
5

0 1 0 0 1 0 6
Y, = y,I, +.. . Y, =(y,+ y 2) I ,+ ...

Y2=Y2l|+... Y2= y2y3 ,I| + ...
Y 3 = I , + ... Y3 = (y2,+ y 3)I ,+ ..

Figure 3 — Partial flow table and assignments

The test procedure searches for that assignment
with a maximum amount of reduced dependency in the
next-state equations. Two types of reduced depen­
dency are easily detected from the assignment. First,
observe that Y3 is dependent only on the input in the
given example. This can be predicted by noting that
y3 has the same value, 1, for all stable states in the
column. A second observation is that Yx is dependent
only on the input and the present state of yv Similarly,
Y2 is a function only of y2 and the input. This can also
be predicted by simply noting that yx and y2 are never
excited to change state for any transition under input
li. In other words, one need simply observe that yx

58 Spring Joint Computer Conference, 1968

and y2 have the same value for state pair (1,4), state
pair (2, 3) and again for state pair (5, 6). Observe the
increased complexity of the next-state variables in
Assignment #2 of Figure 3 as a result of its failure to
insure reduced dependency. The programmed rou­
tine based on this method will evaluate each generated
state assignment for reduced dependency in just a few
seconds.

Maki has also described a procedure for obtaining
next-state equations without construction of the tradi­
tional excitation matrix.7 An algorithm derived from
his method is presented here.

Each internal state transition may be associated
with a p-subcube of the n-cube defined by the input
and internal state variables. Furthermore, all of the
next-state entries of p-subcubes associated with a
sinole stable state will be identical and e^ual to the
row code of the stable state. Consider, for example,
the application of Assignment 1 to Column lt of Fig­
ure 3, as shown in Figure 4.

In the transition between rows 2 and 3, all states
in the p-subcube yxy2 (yi = 1, y2 = 1) must have the
same next-state entries, namely that of stable state 3,
110. A tabular form of p-subcube generation may be
illustrated as follows:

yi y2 y3

1 1 0
l l l

l l -

O Stable Row Code
3 Unstable Row Code

P-Subcube Resulting from
Transition

The transitions from rows 4 and 5 to stable state 1
define the remaining two p-subcubes listed in P^ of
Figure 3. Note that the Boolean sum P- of these
terms represent all next states requiring specified
entries under input lv

h *2*3 I| Pl ,**l*2 + *|,y2 + *lV

0 0 0 1

I I I 2

1 1 0 3

0 0 1 4

0 1 0 5

©/I
3

©/2

1

1

Yj • y ^ I i

Y2 s y|Y2Ii

l"2 • 0 " I I

0| • (y-V + nW *i

02 s Yllfe1!
- 4 N

Figure 4 — Partial flow table, specified p-subcubes and 1-sets

Notice that if ys is 1 in the stable state row code,
then next-state variable Y, = 1 for all states in p-sub­
cubes associated with that stable state. For example,
since in row 3 yx = 1, all states in the p-subcube yxy2

will have next-state variable Yi = 1. In other words, all
p-subcubes associated with transitions to a stable
state will appear in the Boolean sum-of-products next-
state equation Yj if digit i of the stable row code is one.

As the p-subcubes are generated by the computer
program, they axe added to the appropriate next-state
1-set lists only if the corresponding next-state variable
is 1 in the subcube (see Figure 3). The final results are
(partially simplified) Boolean equations representing
the 1-cells of the next-state variables.

The synthesis program also generates the output
equations of the sequential circuits. The output corre­
sponding to a given stable state is also associated with
all unstable states leading to the stable state. All p-
subcubes generated previously are grouped according
to stable state. If an output variable is 1 for a partic­
ular stable state, the associated p-subcubes become a
partial list of 1-sets under the corresponding input.
The output 1-sets for Column Ix in Figure. 1 are shown
as sums in Figure 3.

To permit further simplification of the design equa­
tions generated above, it is desirable to compute the
unspecified entries for all equations. Fortunately,
unspecified p-subcubes are common to all the design
equations. A Boolean equation for don't-care entries
is generated by simply taking the complement of the
available equation for specified entries (see Equation
Pij in Figure 3).

Complementation of a Boolean sum-of-products ex­
pression may be performed by complementing the
expression, multiplying out the result, then simplify­
ing the resultant sum-of-products expression to obtain
the solution. The procedure used here is a modifica­
tion of that method. Simplification illustrated by

A(A + B + C) = A and
A-(A' + D + E) = A(D + E)

is performed both before and during the multiplication*
of the product-of-sums expression. Redundant terms
are also deleted. A brief example will perhaps illus­
trate the method employed. Figure 5 shows comple­
mentation of the sum of p-subcubes shown as PIt in
Figure 3.

A normal-form Boolean equation for each next-state
variable may be obtained by combining the don't-care
terms found above with the appropriate next-state 1-
sets. Since the output associated with don't-care in­
ternal states may be assumed to be unspecified, the
output-state equations also include the same don't-
care terms.

Automation in Design of Asynchronous Sequential Circuits 59

pi, = ^ 2 + yiV+viW
p i i= ty' + y2>' ty + ^' ty + y3>

= y| (y2') + y2 + y3' ty' + YZ) ' (yi + vz)
= y, y2* + y, + (y{yz + y ^) '(y| + yfc)
= yi+ yi'feyj

Figure 5 — P-subcube complementation and simplification

The program then finds prime implicants of each
design equation produced above. A conventional con­
sensus algorithm is used and will not be presented
here.

A covering algorithm is used to find simplified, but
not necessarily minimal design equations. Instead of
covering the 1 -cells of a design equation the program
covers the l-sets originally generated from flow table
columns. (Recall that a 1-set is a subcube containing
one or more vertices or 1-cells for which the expres­
sion is 1.) The problem of generating and covering a
large number of 1-cells is thus avoided. More impor­
tantly, it can easily be shown that by covering the 1-
sets, all static hazards associated with vertical flow
table transitions are eliminated from combinational
circuit outputs. A static hazard exists when there is a
transition between a pair of adjacent states having the
same output, during which it is possible for a momen­
tary improper output level to occur. Using two-level
AND-OR synthesis, if each product (prime implicant)
covers only l-sets, all transitions within that 1-set are
static-hazard-free; static hazards may only be caused
by input-state changes which correspond to horizontal
transitions on the flow table.

A procedure for eliminating the remaining "hori­
zontal" hazards has been included. It is based on the
restriction that only one input-state variable at a time
changes. All pairwise combinations of a design equa­
tion's products (prime implicants) are examined for
horizontally adjacent l-sets. If such an adjacency is
found, a static hazard exists. Since a horizontal transi­
tion may only originate at a stable state, the static
hazard cannot possibly cause a malfunction unless
one of the 1 -sets includes a stable state.

Consider, for example, the illustration shown below,
which is the simplified design equation for Y2 of Fig­
ure 1, using Assignment 1:

Y2 = y3' v' w + y2v + yiw'

(where the input variables are v w)
Note that the horizontally adjacent l-sets y3'v'w and
yiw' appear as the first and third terms. If any stable

state has a code in the subcube yiy3V then a static
hazard exists which may cause a malfunction. Note
that stable state 3 in columns lt and I2 both satisfy

Y2 = y3'v'w + y2v + yxw' + y^gV-

Program performance

Execution times obtained using the program de­
scribed here depend on hardware and software effi­
ciencies, as well as the complexity of the input flow
table. The solution times stated here were obtained
using an IBM 360/50 computer and the IBM Release
13PL/1 Compiler.

Simplified design equations for flow tables of 6
rows by 4 columns (24 cells) have been produced in 45
seconds to 4 minutes, depending on problem complex­
ity. Eight row by 4 column tables usually are solved in
1.5 to 8 minutes. Three assignments for a 12 X 4
(48 cell) flow table have been produced in about 8
minutes, with next-sjtate equations (unsimplified)
generated in 3 minutes per assignment. Two satisfac­
tory codes for a 18x4 (72 cell) flow table were found
in 15 minutes. Computation times for large problems
have been found to be extremely problem-dependent.

SUMMARY

A description of a programmed algorithm for the syn­
thesis of normal fundamental mode sequential circuits
has been presented. The program permits the logic
designer to input his asynchronous sequential circuit
specifications in the form of a flow table and obtain all
next-state equations and output equations in the form
of simplified sum-of-products. Two internal state as­
signment algorithms are available to the designer. One
will generate a minimum-variable assignment but may
be lengthy to execute while the other will execute
much faster but guarantees only a near-minimum var­
iable solution. A testing routine is then available to
aid the designer in deciding which of several satisfac­
tory state assignments will tend to reduce the complex­
ity of the design equations. A "good" assignment will
be selected and simplified next-state and output equa­
tions will be generated based on the selected assign­
ment. The complete program has been written in PL/1
and is running on an IBM 360/50 computer at the Uni­
versity of Missouri at Rolla. Flow tables with up to 75
specified next-state entries have already been run
and much larger flow tables will soon be generated
for experimentation purposes.

REFERENCES
1 R J SMITH II

A programmed synthesis procedure for asynchronous sequen­
tial circuits

60 Spring Joint Computer Conference, 1968

Masters Thesis University of Missouri at Rolla 1967
2 W L SCHOEFFEL

Programmed state assignment algorithms for asnychronous
sequential machines
Masters Thesis University of Missouri at Rolla 1967

3 J H TRACEY
Internal state assignments for asynchronous sequential
machines
IEEE Transactions on Electronic Computers Volume EC-15
pp 551-560 August 1966

4 D A HUFFMAN
The synthesis of sequential switching circuits
Journal of the Franklin Institute vol 257 pp 151-190 and

275-303 March and April 1954
5 M C PAULL S H UNGER

Minimizing the number of states in incompletely specified
sequential switching functions

IRE Transactions on Electronic Computers vol EC-8 pp 356-
367 September 1959

6 E J MC CLUSKEY
Minimization of Boolean functions
Bell System Technical Journal pp 1417-1443 November 1956

7 G K MAKI
Minimization and generation of next-state expressions for
asynchronous sequential circuits
Masters Thesis University of Missouri at Rolla 1967

	Automation In The Design Of Asynchronous Sequential Circuits
	Recommended Citation

	tmp.1686756312.pdf.DzN1Q

