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Automation in the design of asynchronous 
sequential circuits* 

by R. J. SMITH, II, J. H. TRACEY, W. L. SCHOEFFEL and G. K. MAKI 
University of Missouri at Rolla 
Rolla, Missouri 

INTRODUCTION 
Sequential switching circuits are commonly classi­
fied as being either synchronous or asynchronous. 
Clock pulses synchronize the operations of the syn­
chronous circuit. The operation of an asynchronous 
circuit is usually assumed to be independent of such 
clocks. The operating speed of an asynchronous cir­
cuit is thus limited only by basic device speed. One 
disadvantage of asynchronous circuit design has been 
the complexity of the synthesis procedures for large 
circuits. 

This paper describes a computer program1*2 which 
automatically generates the complete set of design 
equations for asynchronous sequential circuits. Many 
of the algorithms employed are new and have been 
shown to be much more practical than classical tech­
niques for the synthesis of large circuits. 

Minimum or near-minimum variable internal state 
assignments are generated using two of the Tracey 
algorithms.3 An evaluation procedure predicts which 
of several codes generated will most likely yield the 
least complex design equations. Next-state equations, 
including don't-cares, are then produced without con­
structing transition tables. Output-state equations are 
also generated. Finally, simplified normal form design 
equations containing no static hazards are produced. 
The program is capable of designing circuits much too 
large to design manually. 

The operation of a sequential circuit is often 
described by means of a flow table.4 An example is 
shown in Figure 1. The columns of a flow table repre­
sent input states, while the rows represent internal 
states assumed by the circuit. Each flow table entry 
specifies the next internal state and output which 
result from the given input and internal states. When 
the next-state equals the present state, that state is 
said to be stable and is customarily circled. Unstable 

•The research reported in this paper was supported in part by 
the National Science Foundation through Grant GK-820. 

states correspond to transitions within a flow table 
column. 
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Figure 1 — Flow table 

A sequential circuit is operating in fundamental 
mode if the inputs are never changed unless the cir­
cuit is stable internally. If, in addition, each unstable 
state leads directly to a stable state, the circuit is 
said to be operating in normal fundamental mode. The 
computer program described in this paper automati­
cally generates design equations for asynchronous 
sequential circuits operating in the normal funda­
mental mode. Circuit specifications are conveniently 
input in flow table form. Input state binary codes are 
specified by the program user. A summary flow chart 
of the procedure followed by the synthesis algorithm 
is shown in Figure 2. 
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The program used to implement the design proce­
dure suggested above is written in PL/1. This lan­
guage was chosen because of its bit-string data for­
mat, Boolean operations, and the controllable storage 
feature. The program consists of about 2000 PL/1 
statements divided into 8 subroutines. The system 
was designed to run on an IBM 360/40 but could be 
run on a somewhat smaller machine. 

Figure 2—The programmed synthesis algorithm 

State assignment algorithm 

The internal state assignment procedures employed 
are a modification of those described by Tracey.3 

Either completely or partially simplified flow tables 
may be input to the program. Flow table simplifica­
tion is not presently included in the synthesis proce­
dure, but will be included in a later version of the pro­
gram. 

The Tracey state assignment algorithms are based 
oh the following theorem which is reproduced with­
out proof. "A row assignment to a flow table which 
allots one internal state per row is satisfactory for the 
realization of normal fundamental mode flow tables 
without critical races if and only if for every transition 
(Si5 Sj), a) if (Sm, SR) is another transition in the same 
column, then at least one internal state variable parti­
tions the pair {Si, Sj} and the pair {Sm, Sn} into sepa­
rate blocks; b) if Sk is a stable state not involved in 
any transitions in the column, then at least one internal 
state variable partitions the pair {Si? SJ and the state 
Sk into separate blocks; and c) for i ^ j , Si and Sj are 
in separate blocks of at least one internal state varia­
ble partition." 

Constraints generated as a result of applying the 
above theorem may be listed in Boolean matrix form, 
with each row corresponding to a partially specified 
state variable. Consider, for example, the constraint 
list generated by the flow table of Figure 1. The con­
straints shown below are generated on a per-column 
basis in satisfying theorem parts a) and b): 

Constraint 
List 

(14; 23) 
(15; 23) 
( 3; 24) 
(24; 5) 
(25; 14) 
( 1 . A\ 

Boolean 
Matrix 
12345 
0110-
011-0 
-101-
-0-01 
10-10 
A 1 
\t— i -

The program forms all partitions associated with the 
topmost stable state of column 1, then all irredundant 
partitions due to the second state, and continues until 
all stable states in the column have been examined. 
The process is then repeated for the remaining col-
ums. 

Note that for the above example, none of the col­
umn-generated constraints partitioned flow table rows 
1 and 4; the constraint (1;4) was thus included in the 
list to satisfy theorem part c). The program checks all 
pairs of flow table rows, and generates additional par­
titions as required by c). 

The state assignment problem now becomes one of 
finding a minimum number of internal state variables 
satisfying all of the constraints just generated. This 
problem has been shown to be analogous to the gener­
ation of maximal compatibles by the Paull-Unger al­
gorithms for flow table simplification. A set of com­
pletely specified state variables, at least one of which 
covers each constraint, corresponds to the maximal 
compatibles. These completely specified state varia­
bles will be referred to here, therefore, as maximal 
constraints. The selection of a minimum number of 
maximal constraints, and hence minimum number of 
internal state variables is similar to the covering prob­
lem in the Quine-McCluskey method for simplifying 
Boolean equations. Details of these algorithms are 
available in the literature and will not be given here.3,5'6 

As in the Paull-Unger Method A,5 maximal con­
straint generation may begin with the assumption that 
no constraints exist. Then each constraint is examined 
for contradictions to this assumption and all implied 
partitions are generated. After each constraint has 
been so examined, one is left with the set of maximal 
constraints. In another approach, Paull-Unger Meth­
od B, one begins with the list of constraints and seeks 
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to enlarge each through the complete specification of 
the corresponding state variable until all enlarge­
ments are found that cover one or more of the original 
constraints. Both procedures were programmed and 
the second was found to be nearly a factor of two fas­
ter than the first in this application. 

As stated previously, the selecting of a minimum 
number of maximal constraints is similar to the cov­
ering problem in Boolean equation simplification. A 
branching method has been used which is capable of 
producing ail irredundant minimum-variable assign­
ments. Operating speed of this algorithm is increased 
by reorganization of the maximal constraint list, based 
on the idea that those maximal constraints including 
the largest number of the original constraints would 
most likely be members of a minimal cover. Internal 
representation of each maximal constraint is restruc­
tured in such a manner that the covering problem can­
not be further simplified using column dominance 
techniques. 

It is obvious that either of the two assignments be­
low satisfy all of the constraints shown above: 

Assignment #1 

1 2 3 4 5 
yt 0 1 1 0 0 
y2 0 1 1 0 1 
y3 0 1 0 1 0 

Assignment #2 

1 2 3 4 5 
yx 0 1 1 0 1 
y2 0 1 1 1 0 
y3 0 1 0 1 0 

Furthermore, these are the only two significantly 
different minimum assignments which successfully 
code the Figure 1 flow table. 

It has been found that even with certain look-ahead 
provisions in the branching routine, generation of 
minimum variable assignments becomes a time-con­
suming problem for typical flow tables of 12 rows or 
more. A second and much faster algorithm has been 
programmed. It is an approximate method, and gener­
ates near-minimum variable codes. 

The fast algorithm reduces the Boolean matrix cor­
responding to the maximal constraints through the 
use of an approximate reduction technique. A con­
straint is constructed which seems to include a large 
number of matrix rows. The included matrix rows are 
then removed. This process is then continued until 
all rows of the original matrix are included in at least 
one of the generated constraints. This reduced matrix 
corresponds to a near-minimum variable state assign­
ment. 

The fast Boolean matrix reduction program usually 
produces satisfactory assignments having less than 
1V3 times the minimum number of variables. Assign­
ment generation times for large flow tables may be re-
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duced by two orders of magnitude using this approxi­
mate procedure. Near-minimal assignments have been 
efficiently generated for flow tables having up to 75 
specified next-state entries and 150 constraints with 
approximately 15 minutes computer time on an IBM 
360/50. Many satisfactory assignments are often gen­
erated. One of these may be selected by a test routine 
or chosen by the designer. The test routine, to be 
discussed below, chooses a "good" assignment for 
reduced hardware realization. 

Design equations 

As the example above illustrates, the code gener­
ating algorithms frequently produce several satisfac­
tory assignments. Generated codes may be evaluated 
by a procedure due to Maki,7 which selects that assign­
ment most likely to have simple next-state equations. 
Consider, for example, the assignments and next-state 
equations shown in Figure 3. Note that the next-state 
equations for column Ix Assignment #1 are much less 
complex than those for Assignment #2. 

Assignment*I Assignment#2 

Y| V2 V3 V| V2 V3 
0 0 0 0 0 0 

2 
2 
4 
5 

0 1 0 0 1 0 6 
Y, = y,I, +.. . Y, =(y,+ y 2 ) I ,+ ... 

Y2=Y2l|+... Y2= y2y3 ,I| + ... 
Y 3 = I , + ... Y3 = (y2,+ y 3 )I ,+ .. 

Figure 3 — Partial flow table and assignments 

The test procedure searches for that assignment 
with a maximum amount of reduced dependency in the 
next-state equations. Two types of reduced depen­
dency are easily detected from the assignment. First, 
observe that Y3 is dependent only on the input in the 
given example. This can be predicted by noting that 
y3 has the same value, 1, for all stable states in the 
column. A second observation is that Yx is dependent 
only on the input and the present state of yv Similarly, 
Y2 is a function only of y2 and the input. This can also 
be predicted by simply noting that yx and y2 are never 
excited to change state for any transition under input 
li. In other words, one need simply observe that yx 
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and y2 have the same value for state pair (1,4), state 
pair (2, 3) and again for state pair (5, 6). Observe the 
increased complexity of the next-state variables in 
Assignment #2 of Figure 3 as a result of its failure to 
insure reduced dependency. The programmed rou­
tine based on this method will evaluate each generated 
state assignment for reduced dependency in just a few 
seconds. 

Maki has also described a procedure for obtaining 
next-state equations without construction of the tradi­
tional excitation matrix.7 An algorithm derived from 
his method is presented here. 

Each internal state transition may be associated 
with a p-subcube of the n-cube defined by the input 
and internal state variables. Furthermore, all of the 
next-state entries of p-subcubes associated with a 
sinole stable state will be identical and e^ual to the 
row code of the stable state. Consider, for example, 
the application of Assignment 1 to Column lt of Fig­
ure 3, as shown in Figure 4. 

In the transition between rows 2 and 3, all states 
in the p-subcube yxy2 (yi = 1, y2 = 1) must have the 
same next-state entries, namely that of stable state 3, 
110. A tabular form of p-subcube generation may be 
illustrated as follows: 

yi y2 y3 

1 1 0 
l l l 

l l -

O Stable Row Code 
3 Unstable Row Code 

P-Subcube Resulting from 
Transition 

The transitions from rows 4 and 5 to stable state 1 
define the remaining two p-subcubes listed in P^ of 
Figure 3. Note that the Boolean sum P- of these 
terms represent all next states requiring specified 
entries under input lv 

h *2*3 I| Pl ,**l*2 + *|,y2 + *lV 

0 0 0 1 

I I I 2 

1 1 0 3 

0 0 1 4 

0 1 0 5 
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Figure 4 — Partial flow table, specified p-subcubes and 1-sets 

Notice that if ys is 1 in the stable state row code, 
then next-state variable Y, = 1 for all states in p-sub­
cubes associated with that stable state. For example, 
since in row 3 yx = 1, all states in the p-subcube yxy2 

will have next-state variable Yi = 1. In other words, all 
p-subcubes associated with transitions to a stable 
state will appear in the Boolean sum-of-products next-
state equation Yj if digit i of the stable row code is one. 

As the p-subcubes are generated by the computer 
program, they axe added to the appropriate next-state 
1-set lists only if the corresponding next-state variable 
is 1 in the subcube (see Figure 3). The final results are 
(partially simplified) Boolean equations representing 
the 1-cells of the next-state variables. 

The synthesis program also generates the output 
equations of the sequential circuits. The output corre­
sponding to a given stable state is also associated with 
all unstable states leading to the stable state. All p-
subcubes generated previously are grouped according 
to stable state. If an output variable is 1 for a partic­
ular stable state, the associated p-subcubes become a 
partial list of 1-sets under the corresponding input. 
The output 1-sets for Column Ix in Figure. 1 are shown 
as sums in Figure 3. 

To permit further simplification of the design equa­
tions generated above, it is desirable to compute the 
unspecified entries for all equations. Fortunately, 
unspecified p-subcubes are common to all the design 
equations. A Boolean equation for don't-care entries 
is generated by simply taking the complement of the 
available equation for specified entries (see Equation 
Pij in Figure 3). 

Complementation of a Boolean sum-of-products ex­
pression may be performed by complementing the 
expression, multiplying out the result, then simplify­
ing the resultant sum-of-products expression to obtain 
the solution. The procedure used here is a modifica­
tion of that method. Simplification illustrated by 

A(A + B + C) = A and 
A-(A' + D + E) = A(D + E) 

is performed both before and during the multiplication* 
of the product-of-sums expression. Redundant terms 
are also deleted. A brief example will perhaps illus­
trate the method employed. Figure 5 shows comple­
mentation of the sum of p-subcubes shown as PIt in 
Figure 3. 

A normal-form Boolean equation for each next-state 
variable may be obtained by combining the don't-care 
terms found above with the appropriate next-state 1-
sets. Since the output associated with don't-care in­
ternal states may be assumed to be unspecified, the 
output-state equations also include the same don't-
care terms. 
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pi, = ^ 2 + yiV+viW 
p i i= ty' + y2>' ty + ^' ty + y3> 

= y| (y2') + y2 + y3' ty' + YZ) ' (yi + vz) 
= y, y2* + y, + (y{yz + y ^ ) '(y| + yfc) 
= yi+ yi'feyj 

Figure 5 — P-subcube complementation and simplification 

The program then finds prime implicants of each 
design equation produced above. A conventional con­
sensus algorithm is used and will not be presented 
here. 

A covering algorithm is used to find simplified, but 
not necessarily minimal design equations. Instead of 
covering the 1 -cells of a design equation the program 
covers the l-sets originally generated from flow table 
columns. (Recall that a 1-set is a subcube containing 
one or more vertices or 1-cells for which the expres­
sion is 1.) The problem of generating and covering a 
large number of 1-cells is thus avoided. More impor­
tantly, it can easily be shown that by covering the 1-
sets, all static hazards associated with vertical flow 
table transitions are eliminated from combinational 
circuit outputs. A static hazard exists when there is a 
transition between a pair of adjacent states having the 
same output, during which it is possible for a momen­
tary improper output level to occur. Using two-level 
AND-OR synthesis, if each product (prime implicant) 
covers only l-sets, all transitions within that 1-set are 
static-hazard-free; static hazards may only be caused 
by input-state changes which correspond to horizontal 
transitions on the flow table. 

A procedure for eliminating the remaining "hori­
zontal" hazards has been included. It is based on the 
restriction that only one input-state variable at a time 
changes. All pairwise combinations of a design equa­
tion's products (prime implicants) are examined for 
horizontally adjacent l-sets. If such an adjacency is 
found, a static hazard exists. Since a horizontal transi­
tion may only originate at a stable state, the static 
hazard cannot possibly cause a malfunction unless 
one of the 1 -sets includes a stable state. 

Consider, for example, the illustration shown below, 
which is the simplified design equation for Y2 of Fig­
ure 1, using Assignment 1: 

Y2 = y3' v' w + y2v + yiw' 

(where the input variables are v w) 
Note that the horizontally adjacent l-sets y3'v'w and 
yiw' appear as the first and third terms. If any stable 

state has a code in the subcube yiy3V then a static 
hazard exists which may cause a malfunction. Note 
that stable state 3 in columns lt and I2 both satisfy 

Y2 = y3'v'w + y2v + yxw' + y^gV-

Program performance 

Execution times obtained using the program de­
scribed here depend on hardware and software effi­
ciencies, as well as the complexity of the input flow 
table. The solution times stated here were obtained 
using an IBM 360/50 computer and the IBM Release 
13PL/1 Compiler. 

Simplified design equations for flow tables of 6 
rows by 4 columns (24 cells) have been produced in 45 
seconds to 4 minutes, depending on problem complex­
ity. Eight row by 4 column tables usually are solved in 
1.5 to 8 minutes. Three assignments for a 12 X 4 
(48 cell) flow table have been produced in about 8 
minutes, with next-sjtate equations (unsimplified) 
generated in 3 minutes per assignment. Two satisfac­
tory codes for a 18x4 (72 cell) flow table were found 
in 15 minutes. Computation times for large problems 
have been found to be extremely problem-dependent. 

SUMMARY 

A description of a programmed algorithm for the syn­
thesis of normal fundamental mode sequential circuits 
has been presented. The program permits the logic 
designer to input his asynchronous sequential circuit 
specifications in the form of a flow table and obtain all 
next-state equations and output equations in the form 
of simplified sum-of-products. Two internal state as­
signment algorithms are available to the designer. One 
will generate a minimum-variable assignment but may 
be lengthy to execute while the other will execute 
much faster but guarantees only a near-minimum var­
iable solution. A testing routine is then available to 
aid the designer in deciding which of several satisfac­
tory state assignments will tend to reduce the complex­
ity of the design equations. A "good" assignment will 
be selected and simplified next-state and output equa­
tions will be generated based on the selected assign­
ment. The complete program has been written in PL/1 
and is running on an IBM 360/50 computer at the Uni­
versity of Missouri at Rolla. Flow tables with up to 75 
specified next-state entries have already been run 
and much larger flow tables will soon be generated 
for experimentation purposes. 
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