434 research outputs found

    Copasetic analysis: a framework for the blind analysis of microarray imagery

    Get PDF
    The official published version can be found at the link below.From its conception, bioinformatics has been a multidisciplinary field which blends domain expert knowledge with new and existing processing techniques, all of which are focused on a common goal. Typically, these techniques have focused on the direct analysis of raw microarray image data. Unfortunately, this fails to utilise the image's full potential and in practice, this results in the lab technician having to guide the analysis algorithms. This paper presents a dynamic framework that aims to automate the process of microarray image analysis using a variety of techniques. An overview of the entire framework process is presented, the robustness of which is challenged throughout with a selection of real examples containing varying degrees of noise. The results show the potential of the proposed framework in its ability to determine slide layout accurately and perform analysis without prior structural knowledge. The algorithm achieves approximately, a 1 to 3 dB improved peak signal-to-noise ratio compared to conventional processing techniques like those implemented in GenePixÂź when used by a trained operator. As far as the authors are aware, this is the first time such a comprehensive framework concept has been directly applied to the area of microarray image analysis

    Automatic gridding of DNA microarray images.

    Get PDF
    Microarray (DNA chip) technology is having a significant impact on genomic studies. Many fields, including drug discovery and toxicological research, will certainly benefit from the use of DNA microarray technology. Microarray analysis is replacing traditional biological assays based on gels, filters and purification columns with small glass chips containing tens of thousands of DNA and protein sequences in agricultural and medical sciences. Microarray functions like biological microprocessors, enabling the rapid and quantitative analysis of gene expression patterns, patient genotypes, drug mechanisms and disease onset and progression on a genomic scale. Image analysis and statistical analysis are two important aspects of microarray technology. Gridding is necessary to accurately identify the location of each of the spots while extracting spot intensities from the microarray images and automating this procedure permits high-throughput analysis. Due to the deficiencies of the equipment that is used to print the arrays, rotations, misalignments, high contaminations with noise and artifacts, solving the grid segmentation problem in an automatic system is not trivial. The existing techniques to solve the automatic grid segmentation problem cover only limited aspect of this challenging problem and requires the user to specify or make assumptions about the spotsize, rows and columns in the grid and boundary conditions. An automatic gridding and spot quantification technique is proposed, which takes a matrix of pixels or a microarray image as input and makes no assumptions about the spotsize, rows and columns in the grid and is found to effective on datasets from GEO, Stanford genomic laboratories and on images obtained from private repositories. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .V53. Source: Masters Abstracts International, Volume: 43-03, page: 0891. Adviser: Luis Rueda. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Get PDF
    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.</p

    METTL3 regulates WTAP protein homeostasis

    Get PDF
    The Wilms tumor 1 (WT1)-associated protein (WTAP) is upregulated in many tumors, including, acute myeloid leukemia (AML), where it plays an oncogenic role by interacting with different proteins involved in RNA processing and cell proliferation. In addition, WTAP is also a regulator of the nuclear complex required for the deposition of N6-methyladenosine (m6A) into mRNAs, containing the METTL3 methyltransferase. However, it is not clear if WTAP may have m6A-independent regulatory functions that might contribute to its oncogenic role. Here, we show that both knockdown and overexpression of METTL3 protein results in WTAP protein upregulation, indicating that METTL3 levels are critical for WTAP protein homeostasis. However, we show that WTAP upregulation is not sufficient to promote cell proliferation in the absence of a functional METTL3. Therein, these data indicate that the reported oncogenic function of WTAP is strictly connected to a functional m6A methylation complex

    Robust Microarray Image Processing

    Get PDF

    Crossword: A Fully Automated Algorithm for the Segmentation and Quality Control of Protein Microarray Images

    Get PDF
    Biological assays formatted as microarrays have become a critical tool for the generation of the comprehensive data sets required for systems-level understanding of biological processes. Manual annotation of data extracted from images of microarrays, however, remains a significant bottleneck, particularly for protein microarrays due to the sensitivity of this technology to weak artifact signal. In order to automate the extraction and curation of data from protein microarrays, we describe an algorithm called Crossword that logically combines information from multiple approaches to fully automate microarray segmentation. Automated artifact removal is also accomplished by segregating structured pixels from the background noise using iterative clustering and pixel connectivity. Correlation of the location of structured pixels across image channels is used to identify and remove artifact pixels from the image prior to data extraction. This component improves the accuracy of data sets while reducing the requirement for time-consuming visual inspection of the data. Crossword enables a fully automated protocol that is robust to significant spatial and intensity aberrations. Overall, the average amount of user intervention is reduced by an order of magnitude and the data quality is increased through artifact removal and reduced user variability. The increase in throughput should aid the further implementation of microarray technologies in clinical studies.Camille and Henry Dreyfus Foundation (Camille Dreyfus Teacher-Scholar Award

    Impacts of DNA Microarray Technology in Gene Therapy

    Get PDF

    Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Eisenia fetida</it>, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two <it>E. fetida </it>libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR.</p> <p>Results</p> <p>A total of 3144 good quality ESTs (GenBank dbEST accession number <ext-link ext-link-type="gen" ext-link-id="EH669363">EH669363</ext-link>–<ext-link ext-link-type="gen" ext-link-id="EH672369">EH672369</ext-link> and <ext-link ext-link-type="gen" ext-link-id="EL515444">EL515444</ext-link>–<ext-link ext-link-type="gen" ext-link-id="EL515580">EL515580</ext-link>) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms <it>Drosophila melanogaster</it>, <it>Mus musculus</it>, <it>Saccharomyces cerevisiae</it>, and <it>Caenorhabditis elegans</it>. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2.</p> <p>Conclusion</p> <p>The ESTMD containing the sequence and annotation information of 4032 <it>E. fetida </it>ESTs is publicly accessible at <url>http://mcbc.usm.edu/estmd/</url>.</p
    • 

    corecore