21,914 research outputs found

    Narrative Generation in Entertainment: Using Artificial Intelligence Planning

    Get PDF
    From the field of artificial intelligence (AI) there is a growing stream of technology capable of being embedded in software that will reshape the way we interact with our environment in our everyday lives. This ‘AI software’ is often used to tackle more mundane tasks that are otherwise dangerous or meticulous for a human to accomplish. One particular area, explored in this paper, is for AI software to assist in supporting the enjoyable aspects of the lives of humans. Entertainment is one of these aspects, and often includes storytelling in some form no matter what the type of media, including television, films, video games, etc. This paper aims to explore the ability of AI software to automate the story-creation and story-telling process. This is part of the field of Automatic Narrative Generator (ANG), which aims to produce intuitive interfaces to support people (without any previous programming experience) to use tools to generate stories, based on their ideas of the kind of characters, intentions, events and spaces they want to be in the story. The paper includes details of such AI software created by the author that can be downloaded and used by the reader for this purpose. Applications of this kind of technology include the automatic generation of story lines for ‘soap operas’

    Searching for a Solution to Program Verification=Equation Solving in CCS

    Get PDF
    International audienceUnder non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in game theory and provides “agent-specific” results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model

    Improving QED-Tutrix by Automating the Generation of Proofs

    Full text link
    The idea of assisting teachers with technological tools is not new. Mathematics in general, and geometry in particular, provide interesting challenges when developing educative softwares, both in the education and computer science aspects. QED-Tutrix is an intelligent tutor for geometry offering an interface to help high school students in the resolution of demonstration problems. It focuses on specific goals: 1) to allow the student to freely explore the problem and its figure, 2) to accept proofs elements in any order, 3) to handle a variety of proofs, which can be customized by the teacher, and 4) to be able to help the student at any step of the resolution of the problem, if the need arises. The software is also independent from the intervention of the teacher. QED-Tutrix offers an interesting approach to geometry education, but is currently crippled by the lengthiness of the process of implementing new problems, a task that must still be done manually. Therefore, one of the main focuses of the QED-Tutrix' research team is to ease the implementation of new problems, by automating the tedious step of finding all possible proofs for a given problem. This automation must follow fundamental constraints in order to create problems compatible with QED-Tutrix: 1) readability of the proofs, 2) accessibility at a high school level, and 3) possibility for the teacher to modify the parameters defining the "acceptability" of a proof. We present in this paper the result of our preliminary exploration of possible avenues for this task. Automated theorem proving in geometry is a widely studied subject, and various provers exist. However, our constraints are quite specific and some adaptation would be required to use an existing prover. We have therefore implemented a prototype of automated prover to suit our needs. The future goal is to compare performances and usability in our specific use-case between the existing provers and our implementation.Comment: In Proceedings ThEdu'17, arXiv:1803.0072

    Searching for a Solution to Program Verification=Equation Solving in CCS

    Get PDF

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    Security policy refinement using data integration: a position paper.

    No full text
    In spite of the wide adoption of policy-based approaches for security management, and many existing treatments of policy verification and analysis, relatively little attention has been paid to policy refinement: the problem of deriving lower-level, runnable policies from higher-level policies, policy goals, and specifications. In this paper we present our initial ideas on this task, using and adapting concepts from data integration. We take a view of policies as governing the performance of an action on a target by a subject, possibly with certain conditions. Transformation rules are applied to these components of a policy in a structured way, in order to translate the policy into more refined terms; the transformation rules we use are similar to those of global-as-view database schema mappings, or to extensions thereof. We illustrate our ideas with an example. Copyright 2009 ACM

    Interactive specification acquisition via scenarios: A proposal

    Get PDF
    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT
    • 

    corecore