8 research outputs found

    Image statistics for material perception

    Get PDF
    For estimation of material properties, inverse optics is generally too difficult to solve. Human material perception seems to rely on image features that are correlated with the material property under natural viewing environments. The critical features often take the form of image statistics, because many material properties can be characterized by how they optically modulate the natural image statistics. For instance, a critical image statistic for surface wetness perception is enhanced color saturations, while that for subresolution fineness perception is reduced luminance contrasts. There are optical reasons these image features vary in correlation with physical material properties, as well as psychophysical evidence that human material perception does respond to the features. That the shape (skewness) of the luminance histogram strongly affects surface material (gloss) perception, while not surface shape perception, suggests that material and shape perceptions may rely on independent image features — material (surface reflectance) perception relies on the magnitude of luminance gradient, while shape perception relies on the order of luminance gradient. I also discuss the merit and demerit of image statistics in relation to mid-level perceptual features, and deep neural network features

    Communication of Digital Material Appearance Based on Human Perception

    Get PDF
    Im alltĂ€gliche Leben begegnen wir digitalen Materialien in einer Vielzahl von Situationen wie beispielsweise bei Computerspielen, Filmen, ReklamewĂ€nden in zB U-Bahn Stationen oder beim Online-Kauf von Kleidungen. WĂ€hrend einige dieser Materialien durch digitale Modelle reprĂ€sentiert werden, welche das Aussehen einer bestimmten OberflĂ€che in AbhĂ€ngigkeit des Materials der FlĂ€che sowie den Beleuchtungsbedingungen beschreiben, basieren andere digitale Darstellungen auf der simplen Verwendung von Fotos der realen Materialien, was zB bei Online-Shopping hĂ€ufig verwendet wird. Die Verwendung von computer-generierten Materialien ist im Vergleich zu einzelnen Fotos besonders vorteilhaft, da diese realistische Erfahrungen im Rahmen von virtuellen Szenarien, kooperativem Produkt-Design, Marketing wĂ€hrend der prototypischen Entwicklungsphase oder der Ausstellung von Möbeln oder Accesoires in spezifischen Umgebungen erlauben. WĂ€hrend mittels aktueller Digitalisierungsmethoden bereits eine beeindruckende ReproduktionsqualitĂ€t erzielt wird, wird eine hochprĂ€zise photorealistische digitale Reproduktion von Materialien fĂŒr die große Vielfalt von Materialtypen nicht erreicht. Daher verwenden viele Materialkataloge immer noch Fotos oder sogar physikalische Materialproben um ihre Kollektionen zu reprĂ€sentieren. Ein wichtiger Grund fĂŒr diese LĂŒcke in der Genauigkeit des Aussehens von digitalen zu echten Materialien liegt darin, dass die ZusammenhĂ€nge zwischen physikalischen Materialeigenschaften und der vom Menschen wahrgenommenen visuellen QualitĂ€t noch weitgehend unbekannt sind. Die im Rahmen dieser Arbeit durchgefĂŒhrten Untersuchungen adressieren diesen Aspekt. Zu diesem Zweck werden etablierte digitalie Materialmodellen bezĂŒglich ihrer Eignung zur Kommunikation von physikalischen und sujektiven Materialeigenschaften untersucht, wobei Beobachtungen darauf hinweisen, dass ein Teil der fĂŒhlbaren/haptischen Informationen wie z.B. MaterialstĂ€rke oder HĂ€rtegrad aufgrund der dem Modell anhaftenden geometrische Abstraktion verloren gehen. Folglich wird im Rahmen der Arbeit das Zusammenspiel der verschiedenen Sinneswahrnehmungen (mit Fokus auf die visuellen und akustischen ModalitĂ€ten) untersucht um festzustellen, welche Informationen wĂ€hrend des Digitalisierungsprozesses verloren gehen. Es zeigt sich, dass insbesondere akustische Informationen in Kombination mit der visuellen Wahrnehmung die EinschĂ€tzung fĂŒhlbarer Materialeigenschaften erleichtert. Eines der Defizite bei der Analyse des Aussehens von Materialien ist der Mangel bezĂŒglich sich an der Wahnehmung richtenden Metriken die eine Beantwortung von Fragen wie z.B. "Sind die Materialien A und B sich Ă€hnlicher als die Materialien C und D?" erlauben, wie sie in vielen Anwendungen der Computergrafik auftreten. Daher widmen sich die im Rahmen dieser Arbeit durchgefĂŒhrten Studien auch dem Vergleich von unterschiedlichen MaterialreprĂ€sentationen im Hinblick auf. Zu diesem Zweck wird eine Methodik zur Berechnung der wahrgenommenen paarweisen Ähnlichkeit von Material-Texturen eingefĂŒhrt, welche auf der Verwendung von Textursyntheseverfahren beruht und sich an der Idee/dem Begriff der geradenoch-wahrnehmbaren Unterschiede orientiert. Der vorgeschlagene Ansatz erlaubt das Überwinden einiger Probleme zuvor veröffentlichter Methoden zur Bestimmung der Änhlichkeit von Texturen und fĂŒhrt zu sinnvollen/plausiblen Distanzen von Materialprobem. Zusammenfassend fĂŒhren die im Rahmen dieser Dissertation dargestellten Inhalte/Verfahren zu einem tieferen VerstĂ€ndnis bezĂŒglich der menschlichen Wahnehmung von digitalen bzw. realen Materialien ĂŒber unterschiedliche Sinne, einem besseren VerstĂ€ndnis bzgl. der Bewertung der Ähnlichkeit von Texturen durch die Entwicklung einer neuen perzeptuellen Metrik und liefern grundlegende Einsichten fĂŒr zukĂŒnftige Untersuchungen im Bereich der Perzeption von digitalen Materialien.In daily life, we encounter digital materials and interact with them in numerous situations, for instance when we play computer games, watch a movie, see billboard in the metro station or buy new clothes online. While some of these virtual materials are given by computational models that describe the appearance of a particular surface based on its material and the illumination conditions, some others are presented as simple digital photographs of real materials, as is usually the case for material samples from online retailing stores. The utilization of computer-generated materials entails significant advantages over plain images as they allow realistic experiences in virtual scenarios, cooperative product design, advertising in prototype phase or exhibition of furniture and wearables in specific environments. However, even though exceptional material reproduction quality has been achieved in the domain of computer graphics, current technology is still far away from highly accurate photo-realistic virtual material reproductions for the wide range of existing categories and, for this reason, many material catalogs still use pictures or even physical material samples to illustrate their collections. An important reason for this gap between digital and real material appearance is that the connections between physical material characteristics and the visual quality perceived by humans are far from well-understood. Our investigations intend to shed some light in this direction. Concretely, we explore the ability of state-of-the-art digital material models in communicating physical and subjective material qualities, observing that part of the tactile/haptic information (eg thickness, hardness) is missing due to the geometric abstractions intrinsic to the model. Consequently, in order to account for the information deteriorated during the digitization process, we investigate the interplay between different sensing modalities (vision and hearing) and discover that particular sound cues, in combination with visual information, facilitate the estimation of such tactile material qualities. One of the shortcomings when studying material appearance is the lack of perceptually-derived metrics able to answer questions like "are materials A and B more similar than C and D?", which arise in many computer graphics applications. In the absence of such metrics, our studies compare different appearance models in terms of how capable are they to depict/transmit a collection of meaningful perceptual qualities. To address this problem, we introduce a methodology to compute the perceived pairwise similarity between textures from material samples that makes use of patch-based texture synthesis algorithms and is inspired on the notion of Just-Noticeable Differences. Our technique is able to overcome some of the issues posed by previous texture similarity collection methods and produces meaningful distances between samples. In summary, with the contents presented in this thesis we are able to delve deeply in how humans perceive digital and real materials through different senses, acquire a better understanding of texture similarity by developing a perceptually-based metric and provide a groundwork for further investigations in the perception of digital materials

    Development of a method to classify and analyse the composition of mixed waste materials in real-time.

    Get PDF
    Philip Longhurst - Associate SupervisorThere is a need for innovative technologies to classify and monitor the composition of solid waste in real-time. This research project has highlighted which information is required to improve current process designs. It also identified visible spectrum cameras as the solution that can better inform waste composition and quality without requiring complementing technologies. The experiments applied deep learning methods to classify the materials based on their images, and a method to analyse the composition of mixed waste was developed. There is a high variability in the appearance of waste materials in the context of a material recovery facility. An image capture setup using multiple cameras and light sources was implemented and tested to acquire a representative set of images. The hardware captures images from different angles, with enhanced shadow details, and different exposure levels. Image processing software further augmented the data by rotating and changing the images resolutions. The images were converted to greyscale to increase the method robustness without affecting classification performance. Deep convolutional neural networks were trained on the augmented datasets. The trained networks obtained state-of-the-art performance when tested and validated for the task of waste material classification. Based on this, a composition analysis methodology was developed and tested with mixed material samples. The methodology provides results as accurate as current manual solutions, but it can analyse a waste stream on a conveyor belt in real-time. The findings and observations from the experimental results contribute to knowledge in three main areas: data capture, data processing, and deep learning. This thesis presents the progressive development of the methodology and discusses different applications for waste management. The composition analysis can provide real-time waste data to improve the overall efficiency of the waste treatment industry. This information can be also used by stakeholders for better decision-making in the future.PhD in Energy and Powe
    corecore