17,784 research outputs found

    The Dark Side of Micro-Task Marketplaces: Characterizing Fiverr and Automatically Detecting Crowdturfing

    Full text link
    As human computation on crowdsourcing systems has become popular and powerful for performing tasks, malicious users have started misusing these systems by posting malicious tasks, propagating manipulated contents, and targeting popular web services such as online social networks and search engines. Recently, these malicious users moved to Fiverr, a fast-growing micro-task marketplace, where workers can post crowdturfing tasks (i.e., astroturfing campaigns run by crowd workers) and malicious customers can purchase those tasks for only $5. In this paper, we present a comprehensive analysis of Fiverr. First, we identify the most popular types of crowdturfing tasks found in this marketplace and conduct case studies for these crowdturfing tasks. Then, we build crowdturfing task detection classifiers to filter these tasks and prevent them from becoming active in the marketplace. Our experimental results show that the proposed classification approach effectively detects crowdturfing tasks, achieving 97.35% accuracy. Finally, we analyze the real world impact of crowdturfing tasks by purchasing active Fiverr tasks and quantifying their impact on a target site. As part of this analysis, we show that current security systems inadequately detect crowdsourced manipulation, which confirms the necessity of our proposed crowdturfing task detection approach

    F-formation Detection: Individuating Free-standing Conversational Groups in Images

    Full text link
    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy, we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality.Comment: 32 pages, submitted to PLOS On

    An audio-based sports video segmentation and event detection algorithm

    Get PDF
    In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques
    • ā€¦
    corecore