12,903 research outputs found

    ACon: A learning-based approach to deal with uncertainty in contextual requirements at runtime

    Get PDF
    Context: Runtime uncertainty such as unpredictable operational environment and failure of sensors that gather environmental data is a well-known challenge for adaptive systems. Objective: To execute requirements that depend on context correctly, the system needs up-to-date knowledge about the context relevant to such requirements. Techniques to cope with uncertainty in contextual requirements are currently underrepresented. In this paper we present ACon (Adaptation of Contextual requirements), a data-mining approach to deal with runtime uncertainty affecting contextual requirements. Method: ACon uses feedback loops to maintain up-to-date knowledge about contextual requirements based on current context information in which contextual requirements are valid at runtime. Upon detecting that contextual requirements are affected by runtime uncertainty, ACon analyses and mines contextual data, to (re-)operationalize context and therefore update the information about contextual requirements. Results: We evaluate ACon in an empirical study of an activity scheduling system used by a crew of 4 rowers in a wild and unpredictable environment using a complex monitoring infrastructure. Our study focused on evaluating the data mining part of ACon and analysed the sensor data collected onboard from 46 sensors and 90,748 measurements per sensor. Conclusion: ACon is an important step in dealing with uncertainty affecting contextual requirements at runtime while considering end-user interaction. ACon supports systems in analysing the environment to adapt contextual requirements and complements existing requirements monitoring approaches by keeping the requirements monitoring specification up-to-date. Consequently, it avoids manual analysis that is usually costly in today’s complex system environments.Peer ReviewedPostprint (author's final draft

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    08421 Abstracts Collection -- Uncertainty Management in Information Systems

    Get PDF
    From October 12 to 17, 2008 the Dagstuhl Seminar 08421 \u27`Uncertainty Management in Information Systems \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. The abstracts of the plenary and session talks given during the seminar as well as those of the shown demos are put together in this paper

    Automation of motor dexterity assessment

    Get PDF
    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p <; 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives

    Beyond Rational Information Security Decisions: An Alternate View

    Get PDF
    Extant work has examined users’ security behavior in both individual and organizational contexts by mainly applying theories that assume users’ rationality. While this has enhanced our understanding of the conscious factors that underlie security behaviors, the assumption of conscious rationality bounds the theoretical lens. Addressing this limitation would facilitate expanding the knowledge ecology in the information security literature. Information security studies have started to recognize this assumption. To evaluate this milieu of disparate approaches, we conduct a preliminary literature review and identify several nonconscious factors that may shape security behaviors. In this ERF paper, we discuss herd behavior, cognitive biases, automatic cognition (also termed system 1 thinking), affect, risk homeostasis, and framing effects perception. We discuss future plans to develop a research framework that integrates the alternate nonconscious factors that may underlie security behavior, thereby providing a comprehensive alternate approach to studying behavioral information security

    Dynamic decision networks for decision-making in self-adaptive systems: a case study

    Get PDF
    Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and specifically in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, specifically Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision-making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential benefits of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision

    Subleading Power Factorization in Bˉ→Xsℓ+ℓ−\bar B \to X_s \ell^+\ell^-

    Full text link
    We analyze the factorization to subleading power in the flavor changing neutral current process Bˉ→Xsℓ+ℓ−\bar B\to X_s \ell^+ \ell^-. In particular, we compute the so-called resolved contributions and explore the numerical impact on observables. In these contributions the virtual photon couples to light partons instead of connecting directly to the effective weak-interaction vertex. They represent an irreducible uncertainty in the inclusive Bˉ→Xsℓ+ℓ−\bar B \to X_s \ell^+ \ell^- decay which cannot be removed by relaxing the experimentally necessary cuts in the hadronic mass spectrum.Comment: 32 pages,18 figure
    • 

    corecore