1,428 research outputs found

    ACMiner: Extraction and Analysis of Authorization Checks in Android's Middleware

    Get PDF
    Billions of users rely on the security of the Android platform to protect phones, tablets, and many different types of consumer electronics. While Android's permission model is well studied, the enforcement of the protection policy has received relatively little attention. Much of this enforcement is spread across system services, taking the form of hard-coded checks within their implementations. In this paper, we propose Authorization Check Miner (ACMiner), a framework for evaluating the correctness of Android's access control enforcement through consistency analysis of authorization checks. ACMiner combines program and text analysis techniques to generate a rich set of authorization checks, mines the corresponding protection policy for each service entry point, and uses association rule mining at a service granularity to identify inconsistencies that may correspond to vulnerabilities. We used ACMiner to study the AOSP version of Android 7.1.1 to identify 28 vulnerabilities relating to missing authorization checks. In doing so, we demonstrate ACMiner's ability to help domain experts process thousands of authorization checks scattered across millions of lines of code

    The Progress, Challenges, and Perspectives of Directed Greybox Fuzzing

    Full text link
    Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.Comment: 16 pages, 4 figure

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    ACMiner: Extraction and Analysis of Authorization Checks inAndroid’s Middleware

    Get PDF
    Billions of users rely on the security of the Android platform to protect phones, tablets, and many different types of consumer electronics. While Android’s permission model is well studied, the enforcementof the protection policy has received relatively little attention. Much of this enforcement is spread across system services,taking the form of hard-coded checks within their implementations.In this paper, we propose Authorization Check Miner (ACMiner),a framework for evaluating the correctness of Android’s access control enforcement through consistency analysis of authorization checks. ACMiner combines program and text analysis techniques to generate a rich set of authorization checks, mines the corresponding protection policy for each service entry point, and uses association rule mining at a service granularity to identify inconsistencies that may correspond to vulnerabilities. We used ACMiner to study the AOSP version of Android 7.1.1 to identify 28 vulnerabilities relating to missing authorization checks. In doing so, we demonstrate ACMiner’s ability to help domain experts process thousands of authorization checks scattered across millions of lines of code

    Contributions for improving debugging of kernel-level services in a monolithic operating system

    Get PDF
    Alors que la recherche sur la qualité du code des systèmes a connu un formidable engouement, les systèmes d exploitation sont encore aux prises avec des problèmes de fiabilité notamment dus aux bogues de programmation au niveau des services noyaux tels que les pilotes de périphériques et l implémentation des systèmes de fichiers. Des études ont en effet montré que chaque version du noyau Linux contient entre 600 et 700 fautes, et que la propension des pilotes de périphériques à contenir des erreurs est jusqu à sept fois plus élevée que toute autre partie du noyau. Ces chiffres suggèrent que le code des services noyau n est pas suffisamment testé et que de nombreux défauts passent inaperçus ou sont difficiles à réparer par des programmeurs non-experts, ces derniers formant pourtant la majorité des développeurs de services. Cette thèse propose une nouvelle approche pour le débogage et le test des services noyau. Notre approche est focalisée sur l interaction entre les services noyau et le noyau central en abordant la question des trous de sûreté dans le code de définition des fonctions de l API du noyau. Dans le contexte du noyau Linux, nous avons mis en place une approche automatique, dénommée Diagnosys, qui repose sur l analyse statique du code du noyau afin d identifier, classer et exposer les différents trous de sûreté de l API qui pourraient donner lieu à des fautes d exécution lorsque les fonctions sont utilisées dans du code de service écrit par des développeurs ayant une connaissance limitée des subtilités du noyau. Pour illustrer notre approche, nous avons implémenté Diagnosys pour la version 2.6.32 du noyau Linux. Nous avons montré ses avantages à soutenir les développeurs dans leurs activités de tests et de débogage.Despite the existence of an overwhelming amount of research on the quality of system software, Operating Systems are still plagued with reliability issues mainly caused by defects in kernel-level services such as device drivers and file systems. Studies have indeed shown that each release of the Linux kernel contains between 600 and 700 faults, and that the propensity of device drivers to contain errors is up to seven times higher than any other part of the kernel. These numbers suggest that kernel-level service code is not sufficiently tested and that many faults remain unnoticed or are hard to fix bynon-expert programmers who account for the majority of service developers. This thesis proposes a new approach to the debugging and testing of kernel-level services focused on the interaction between the services and the core kernel. The approach tackles the issue of safety holes in the implementation of kernel API functions. For Linux, we have instantiated the Diagnosys automated approach which relies on static analysis of kernel code to identify, categorize and expose the different safety holes of API functions which can turn into runtime faults when the functions are used in service code by developers with limited knowledge on the intricacies of kernel code. To illustrate our approach, we have implemented Diagnosys for Linux 2.6.32 and shown its benefits in supporting developers in their testing and debugging tasks.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Static Code Analysis in the AI Era: An In-depth Exploration of the Concept, Function, and Potential of Intelligent Code Analysis Agents

    Full text link
    The escalating complexity of software systems and accelerating development cycles pose a significant challenge in managing code errors and implementing business logic. Traditional techniques, while cornerstone for software quality assurance, exhibit limitations in handling intricate business logic and extensive codebases. To address these challenges, we introduce the Intelligent Code Analysis Agent (ICAA), a novel concept combining AI models, engineering process designs, and traditional non-AI components. The ICAA employs the capabilities of large language models (LLMs) such as GPT-3 or GPT-4 to automatically detect and diagnose code errors and business logic inconsistencies. In our exploration of this concept, we observed a substantial improvement in bug detection accuracy, reducing the false-positive rate to 66\% from the baseline's 85\%, and a promising recall rate of 60.8\%. However, the token consumption cost associated with LLMs, particularly the average cost for analyzing each line of code, remains a significant consideration for widespread adoption. Despite this challenge, our findings suggest that the ICAA holds considerable potential to revolutionize software quality assurance, significantly enhancing the efficiency and accuracy of bug detection in the software development process. We hope this pioneering work will inspire further research and innovation in this field, focusing on refining the ICAA concept and exploring ways to mitigate the associated costs
    • …
    corecore