1,794 research outputs found

    AXES at TRECVID 2012: KIS, INS, and MED

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments

    Visual Landmark Recognition from Internet Photo Collections: A Large-Scale Evaluation

    Full text link
    The task of a visual landmark recognition system is to identify photographed buildings or objects in query photos and to provide the user with relevant information on them. With their increasing coverage of the world's landmark buildings and objects, Internet photo collections are now being used as a source for building such systems in a fully automatic fashion. This process typically consists of three steps: clustering large amounts of images by the objects they depict; determining object names from user-provided tags; and building a robust, compact, and efficient recognition index. To this date, however, there is little empirical information on how well current approaches for those steps perform in a large-scale open-set mining and recognition task. Furthermore, there is little empirical information on how recognition performance varies for different types of landmark objects and where there is still potential for improvement. With this paper, we intend to fill these gaps. Using a dataset of 500k images from Paris, we analyze each component of the landmark recognition pipeline in order to answer the following questions: How many and what kinds of objects can be discovered automatically? How can we best use the resulting image clusters to recognize the object in a query? How can the object be efficiently represented in memory for recognition? How reliably can semantic information be extracted? And finally: What are the limiting factors in the resulting pipeline from query to semantics? We evaluate how different choices of methods and parameters for the individual pipeline steps affect overall system performance and examine their effects for different query categories such as buildings, paintings or sculptures

    Points of Interest and Visual Dictionaries for Automatic Retinal Lesion Detection

    Full text link

    Voronoi-Based Compact Image Descriptors: Efficient Region-of-Interest Retrieval With VLAD and Deep-Learning-Based Descriptors

    Get PDF
    We investigate the problem of image retrieval based on visual queries when the latter comprise arbitrary regionsof- interest (ROI) rather than entire images. Our proposal is a compact image descriptor that combines the state-of-the-art in content-based descriptor extraction with a multi-level, Voronoibased spatial partitioning of each dataset image. The proposed multi-level Voronoi-based encoding uses a spatial hierarchical K-means over interest-point locations, and computes a contentbased descriptor over each cell. In order to reduce the matching complexity with minimal or no sacrifice in retrieval performance: (i) we utilize the tree structure of the spatial hierarchical Kmeans to perform a top-to-bottom pruning for local similarity maxima; (ii) we propose a new image similarity score that combines relevant information from all partition levels into a single measure for similarity; (iii) we combine our proposal with a novel and efficient approach for optimal bit allocation within quantized descriptor representations. By deriving both a Voronoi-based VLAD descriptor (termed as Fast-VVLAD) and a Voronoi-based deep convolutional neural network (CNN) descriptor (termed as Fast-VDCNN), we demonstrate that our Voronoi-based framework is agnostic to the descriptor basis, and can easily be slotted into existing frameworks. Via a range of ROI queries in two standard datasets, it is shown that the Voronoibased descriptors achieve comparable or higher mean Average Precision against conventional grid-based spatial search, while offering more than two-fold reduction in complexity. Finally, beyond ROI queries, we show that Voronoi partitioning improves the geometric invariance of compact CNN descriptors, thereby resulting in competitive performance to the current state-of-theart on whole image retrieval

    Focused image search in the social Web.

    Get PDF
    Recently, social multimedia-sharing websites, which allow users to upload, annotate, and share online photo or video collections, have become increasingly popular. The user tags or annotations constitute the new multimedia meta-data . We present an image search system that exploits both image textual and visual information. First, we use focused crawling and DOM Tree based web data extraction methods to extract image textual features from social networking image collections. Second, we propose the concept of visual words to handle the image\u27s visual content for fast indexing and searching. We also develop several user friendly search options to allow users to query the index using words and image feature descriptions (visual words). The developed image search system tries to bridge the gap between the scalable industrial image search engines, which are based on keyword search, and the slower content based image retrieval systems developed mostly in the academic field and designed to search based on image content only. We have implemented a working prototype by crawling and indexing over 16,056 images from flickr.com, one of the most popular image sharing websites. Our experimental results on a working prototype confirm the efficiency and effectiveness of the methods, that we proposed

    The AXES submissions at TrecVid 2013

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the semantic indexing task (SIN) the multimedia event recounting task (MER), and the multimedia event detection task (MED) for TRECVid 2013. Our interactive INS focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our INS experiments were carried out by students and researchers at Dublin City University. Our best INS runs performed on par with the top ranked INS runs in terms of P@10 and P@30, and around the median in terms of mAP. For SIN, MED and MER, we use systems based on state- of-the-art local low-level descriptors for motion, image, and sound, as well as high-level features to capture speech and text and the visual and audio stream respectively. The low-level descriptors were aggregated by means of Fisher vectors into high- dimensional video-level signatures, the high-level features are aggregated into bag-of-word histograms. Using these features we train linear classifiers, and use early and late-fusion to combine the different features. Our MED system achieved the best score of all submitted runs in the main track, as well as in the ad-hoc track. This paper describes in detail our INS, MER, and MED systems and the results and findings of our experimen
    corecore