13,752 research outputs found

    Automatic Video Self Modeling for Voice Disorder

    Get PDF
    Video self modeling (VSM) is a behavioral intervention technique in which a learner models a target behavior by watching a video of him- or herself. In the field of speech language pathology, the approach of VSM has been successfully used for treatment of language in children with Autism and in individuals with fluency disorder of stuttering. Technical challenges remain in creating VSM contents that depict previously unseen behaviors. In this paper, we propose a novel system that synthesizes new video sequences for VSM treatment of patients with voice disorders. Starting with a video recording of a voice-disorder patient, the proposed system replaces the coarse speech with a clean, healthier speech that bears resemblance to the patient’s original voice. The replacement speech is synthesized using either a text-to-speech engine or selecting from a database of clean speeches based on a voice similarity metric. To realign the replacement speech with the original video, a novel audiovisual algorithm that combines audio segmentation with lip-state detection is proposed to identify corresponding time markers in the audio and video tracks. Lip synchronization is then accomplished by using an adaptive video re-sampling scheme that minimizes the amount of motion jitter and preserves the spatial sharpness. Results of both objective measurements and subjective evaluations on a dataset with 31 subjects demonstrate the effectiveness of the proposed techniques

    Automatic Content Generation for Video Self Modeling

    Get PDF
    Video self modeling (VSM) is a behavioral intervention technique in which a learner models a target behavior by watching a video of him or herself. Its effectiveness in rehabilitation and education has been repeatedly demonstrated but technical challenges remain in creating video contents that depict previously unseen behaviors. In this paper, we propose a novel system that re-renders new talking-head sequences suitable to be used for VSM treatment of patients with voice disorder. After the raw footage is captured, a new speech track is either synthesized using text-to-speech or selected based on voice similarity from a database of clean speeches. Voice conversion is then applied to match the new speech to the original voice. Time markers extracted from the original and new speech track are used to re-sample the video track for lip synchronization. We use an adaptive re-sampling strategy to minimize motion jitter, and apply bilinear and optical-flow based interpolation to ensure the image quality. Both objective measurements and subjective evaluations demonstrate the effectiveness of the proposed techniques

    Computational Multimedia for Video Self Modeling

    Get PDF
    Video self modeling (VSM) is a behavioral intervention technique in which a learner models a target behavior by watching a video of oneself. This is the idea behind the psychological theory of self-efficacy - you can learn or model to perform certain tasks because you see yourself doing it, which provides the most ideal form of behavior modeling. The effectiveness of VSM has been demonstrated for many different types of disabilities and behavioral problems ranging from stuttering, inappropriate social behaviors, autism, selective mutism to sports training. However, there is an inherent difficulty associated with the production of VSM material. Prolonged and persistent video recording is required to capture the rare, if not existed at all, snippets that can be used to string together in forming novel video sequences of the target skill. To solve this problem, in this dissertation, we use computational multimedia techniques to facilitate the creation of synthetic visual content for self-modeling that can be used by a learner and his/her therapist with a minimum amount of training data. There are three major technical contributions in my research. First, I developed an Adaptive Video Re-sampling algorithm to synthesize realistic lip-synchronized video with minimal motion jitter. Second, to denoise and complete the depth map captured by structure-light sensing systems, I introduced a layer based probabilistic model to account for various types of uncertainties in the depth measurement. Third, I developed a simple and robust bundle-adjustment based framework for calibrating a network of multiple wide baseline RGB and depth cameras

    Voice analysis for neurological disorder recognition – a systematic review and perspective on emerging trends

    Get PDF
    Quantifying neurological disorders from voice is a rapidly growing field of research and holds promise for unobtrusive and large-scale disorder monitoring. The data recording setup and data analysis pipelines are both crucial aspects to effectively obtain relevant information from participants. Therefore, we performed a systematic review to provide a high-level overview of practices across various neurological disorders and highlight emerging trends. PRISMA-based literature searches were conducted through PubMed, Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly recorded) datasets were collected. Disorders of interest were psychiatric as well as neurodegenerative disorders, such as bipolar disorder, depression, and stress, as well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease, and speech impairments (aphasia, dysarthria, and dysphonia). Of the 43 retrieved studies, Parkinson's disease is represented most prominently with 19 discovered datasets. Free speech and read speech tasks are most commonly used across disorders. Besides popular feature extraction toolkits, many studies utilise custom-built feature sets. Correlations of acoustic features with psychiatric and neurodegenerative disorders are presented. In terms of analysis, statistical analysis for significance of individual features is commonly used, as well as predictive modeling approaches, especially with support vector machines and a small number of artificial neural networks. An emerging trend and recommendation for future studies is to collect data in everyday life to facilitate longitudinal data collection and to capture the behavior of participants more naturally. Another emerging trend is to record additional modalities to voice, which can potentially increase analytical performance

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility

    The Verbal and Non Verbal Signals of Depression -- Combining Acoustics, Text and Visuals for Estimating Depression Level

    Full text link
    Depression is a serious medical condition that is suffered by a large number of people around the world. It significantly affects the way one feels, causing a persistent lowering of mood. In this paper, we propose a novel attention-based deep neural network which facilitates the fusion of various modalities. We use this network to regress the depression level. Acoustic, text and visual modalities have been used to train our proposed network. Various experiments have been carried out on the benchmark dataset, namely, Distress Analysis Interview Corpus - a Wizard of Oz (DAIC-WOZ). From the results, we empirically justify that the fusion of all three modalities helps in giving the most accurate estimation of depression level. Our proposed approach outperforms the state-of-the-art by 7.17% on root mean squared error (RMSE) and 8.08% on mean absolute error (MAE).Comment: 10 pages including references, 2 figure
    corecore