422 research outputs found

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AĻ‰A \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AĻ‰A \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AĻ‰AOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AĻ‰A \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AĻ‰AOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Hybrid Neuroprosthesis for Lower Limbs

    Get PDF
    Assistive technologies have been proposed for the locomotion of people with spinal cord injury (SCI). One of them is the neuroprosthesis that arouses the interest of developers and health professionals bearing in mind the beneficial effects promoted in people with SCI.Ā Thus, the first session of this chapter presents the principles of human motility and the impact that spinal cord injury causes on a personā€™s mobility. The second session presents functional electrical stimulation as a solution for the immobility of paralyzed muscles. It explains the working principles of constituent modules and main stimulatory parameters. The third session introduces the concepts and characteristics of neural prosthesis hybridization. The last two sessions present and discuss examples of hybrid neuroprostheses. Such systems employ hybrid assistive lower limb strategies to evoke functional movements in people with SCI, associating the motor effects of active and/or passive orthoses to a functional electrical stimulation (FES) system. Examples of typical applications of FES in rehabilitation are discussed

    The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons

    Get PDF
    This article presents the development of a power augmentation and rehabilitation exoskeleton based on a novel actuator. The proposed soft actuators are extensor bending pneumatic artificial muscles. This type of soft actuator is derived from extending McKibben artificial muscles by reinforcing one side to prevent extension. This research has experimentally assessed the performance of this new actuator and an output force mathematical model for it has been developed. This new mathematical model based on the geometrical parameters of the extensor bending pneumatic artificial muscle determines the output force as a function of the input pressure. This model is examined experimentally for different actuator sizes. After promising initial experimental results, further model enhancements were made to improve the model of the proposed actuator. To demonstrate the new bending actuators a power augmentation and rehabilitation soft glove has been developed. This soft hand exoskeleton is able to fit any adult hand size without the need for any mechanical system changes or calibration. EMG signals from the human hand have been monitored to prove the performance of this new design of soft exoskeleton. This power augmentation and rehabilitation wearable robot has been shown to reduce the amount of muscles effort needed to perform a number of simple grasps

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    Use of stance control knee-ankle-foot orthoses : a review of the literature

    Get PDF
    The use of stance control orthotic knee joints are becoming increasingly popular as unlike locked knee-ankle-foot orthoses, these joints allow the limb to swing freely in swing phase while providing stance phase stability, thus aiming to promote a more physiological and energy efficient gait. It is of paramount importance that all aspects of this technology is monitored and evaluated as the demand for evidence based practice and cost effective rehabilitation increases. A robust and thorough literature review was conducted to retrieve all articles which evaluated the use of stance control orthotic knee joints. All relevant databases were searched, including The Knowledge Network, ProQuest, Web of Knowledge, RECAL Legacy, PubMed and Engineering Village. Papers were selected for review if they addressed the use and effectiveness of commercially available stance control orthotic knee joints and included participant(s) trialling the SCKAFO. A total of 11 publications were reviewed and the following questions were developed and answered according to the best available evidence: 1. The effect SCKAFO (stance control knee-ankle-foot orthoses) systems have on kinetic and kinematic gait parameters 2. The effect SCKAFO systems have on the temporal and spatial parameters of gait 3. The effect SCKAFO systems have on the cardiopulmonary and metabolic cost of walking. 4. The effect SCKAFO systems have on muscle power/generation 5. Patientā€™s perceptions/ compliance of SCKAFO systems Although current research is limited and lacks in methodological quality the evidence available does, on a whole, indicate a positive benefit in the use of SCKAFOs. This is with respect to increased knee flexion during swing phase resulting in sufficient ground clearance, decreased compensatory movements to facilitate swing phase clearance and improved temporal and spatial gait parameters. With the right methodological approach, the benefits of using a SCKAFO system can be evidenced and the research more effectively converted into clinical practice
    • ā€¦
    corecore