1,916 research outputs found

    Automated Structural-level Alignment of Multi-view TLS and ALS Point Clouds in Forestry

    Full text link
    Access to highly detailed models of heterogeneous forests from the near surface to above the tree canopy at varying scales is of increasing demand as it enables more advanced computational tools for analysis, planning, and ecosystem management. LiDAR sensors available through different scanning platforms including terrestrial, mobile and aerial have become established as one of the primary technologies for forest mapping due to their inherited capability to collect direct, precise and rapid 3D information of a scene. However, their scalability to large forest areas is highly dependent upon use of effective and efficient methods of co-registration of multiple scan sources. Surprisingly, work in forestry in GPS denied areas has mostly resorted to methods of co-registration that use reference based targets (e.g., reflective, marked trees), a process far from scalable in practice. In this work, we propose an effective, targetless and fully automatic method based on an incremental co-registration strategy matching and grouping points according to levels of structural complexity. Empirical evidence shows the method's effectiveness in aligning both TLS-to-TLS and TLS-to-ALS scans under a variety of ecosystem conditions including pre/post fire treatment effects, of interest to forest inventory surveyors

    Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    Get PDF
    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters

    ASSESSING TERRESTRIAL MMS 3D DATA FOR OUTDOOR MULTI-SCALE MODELLING

    Get PDF
    Mobile Mapping Systems (MMS) have recently benefited from the development of many fusion-based technologies with countless systems development based on cars, drones, trolley, wearable or portable mapping system. The scale of applicating range from the urban to the architectural scale. Recent solution are also based on visual or Lidar SLAM (Simultaneous Localization and Mapping), which substantially takes advantage of environmental features and techniques of continuous co-registration of the clouds, also in case of absence on GNSS positioning measurement. FARO Technology has recently developed the Swift, a fusion-based hybrid solution that integrates the sensors for 3D mapping in a trolley system configuration and recently, an external camera Panocam Theta Z1 is equipping the system enabling the possibility to associate radiometry to the acquired data. The working principle is the exploitation of a system of static and mobile configuration, using the so-called “anchor scans” co-registration as an hybrid intermediate solution between a typical static scan and a profilometers-based MMS point cloud. The co-registered clouds therefore yield a trajectory mode such as SLAM but benefit from the comparable range and density characteristics, according to user-customized settings, of static scans, with a duration of a few seconds per scan and a few minutes overall. In the present research the Swift System is tested in two different context and the assessment are conducted aimed at satisfying both the urban and the architectural scale instances in the direction of improving further evaluations

    Forest structure from terrestrial laser scanning – in support of remote sensing calibration/validation and operational inventory

    Get PDF
    Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information – dubbed “forest inventory” – is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine- scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA’s HyspIRI mission and to support the National Ecological Observatory Network’s (NEON) long-term environmental monitoring initiatives

    State of research in automatic as-built modelling

    Get PDF
    This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.aei.2015.01.001Building Information Models (BIMs) are becoming the official standard in the construction industry for encoding, reusing, and exchanging information about structural assets. Automatically generating such representations for existing assets stirs up the interest of various industrial, academic, and governmental parties, as it is expected to have a high economic impact. The purpose of this paper is to provide a general overview of the as-built modelling process, with focus on the geometric modelling side. Relevant works from the Computer Vision, Geometry Processing, and Civil Engineering communities are presented and compared in terms of their potential to lead to automatic as-built modelling.We acknowledge the support of EPSRC Grant NMZJ/114,DARPA UPSIDE Grant A13–0895-S002, NSF CAREER Grant N. 1054127, European Grant Agreements No. 247586 and 334241. We would also like to thank NSERC Canada, Aecon, and SNC-Lavalin for financially supporting some parts of this research
    • …
    corecore