509 research outputs found

    Designing a Novel Model for Stock Price Prediction Using an Integrated Multi-Stage Structure: The Case of the Bombay Stock Exchange

    Get PDF
    Stock price prediction is considered a strategic and challenging issue in the stock markets. Considering the complexity of stock market data and price fluctuations, the improvement of effective approaches for stock price prediction is a crucial and essential task. Therefore, in this study, a new model based on “Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA)” is employed to predict stock price accurately. ANFIS has been utilized to predict stock price trends more precisely. PSO executes towards developing the vector, and GA has been utilized to adjust the decision vectors employing genetic operators. The stock price data of top companies of the Bombay Stock Exchange (BSE) from 2010 to 2020 are employed to analyze the model functionality. Experimental outcomes demonstrated that the average functionality of our model (77.62%) was achieved noticeably better than other methods. The findings verified that the ANFIS-PSO-GA model is an efficient tool in stock price prediction which can be applied in the different financial markets, especially the stock market

    Automated Trading Systems Statistical and Machine Learning Methods and Hardware Implementation: A Survey

    Get PDF
    Automated trading, which is also known as algorithmic trading, is a method of using a predesigned computer program to submit a large number of trading orders to an exchange. It is substantially a real-time decision-making system which is under the scope of Enterprise Information System (EIS). With the rapid development of telecommunication and computer technology, the mechanisms underlying automated trading systems have become increasingly diversified. Considerable effort has been exerted by both academia and trading firms towards mining potential factors that may generate significantly higher profits. In this paper, we review studies on trading systems built using various methods and empirically evaluate the methods by grouping them into three types: technical analyses, textual analyses and high-frequency trading. Then, we evaluate the advantages and disadvantages of each method and assess their future prospects

    Soft Computing Techniques for Stock Market Prediction: A Literature Survey

    Get PDF
    Stock market trading is an unending investment exercise globally. It has potentials to generate high returns on investors’ investment. However, it is characterized by high risk of investment hence, having knowledge and ability to predict stock price or market movement is invaluable to investors in the stock market. Over the years, several soft computing techniques have been used to analyze various stock markets to retrieve knowledge to guide investors on when to buy or sell. This paper surveys over 100 published articles that focus on the application of soft computing techniques to forecast stock markets. The aim of this paper is to present a coherent of information on various soft computing techniques employed for stock market prediction. This research work will enable researchers in this field to know the current trend as well as help to inform their future research efforts. From the surveyed articles, it is evident that researchers have firmly focused on the development of hybrid prediction models and substantial work has also been done on the use of social media data for stock market prediction. It is also revealing that most studies have focused on the prediction of stock prices in emerging market

    Designing a Novel Model for Stock Price Prediction Using an Integrated Multi-Stage Structure: The Case of the Bombay Stock Exchange

    Get PDF
    Keywords: Stock Price Prediction, Technical Analysis, ANFIS, PSO, GA Stock price prediction is considered a strategic and challenging issue in the stock markets. Considering the complexity of stock market data and price fluctuations, the improvement of effective approaches for stock price prediction is a crucial and essential task. Therefore, in this study, a new model based on “Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA)” is employed to predict stock price accurately. ANFIS has been utilized to predict stock price trends more precisely. PSO executes towards developing the vector, and GA has been utilized to adjust the decision vectors employing genetic operators. The stock price data of top companies of the Bombay Stock Exchange (BSE) from 2010 to 2020 are employed to analyze the model functionality. Experimental outcomes demonstrated that the average functionality of our model (77.62%) was achieved noticeably better than other methods. The findings verified that the ANFIS-PSO-GA model is an efficient tool in stock price prediction which can be applied in the different financial markets, especially the stock market

    Soft Computing Techniques for Stock Market Prediction: A Literature Survey

    Get PDF
    Stock market trading is an unending investment exercise globally. It has potentials to generate high returns on investors’ investment. However, it is characterized by high risk of investment hence, having knowledge and ability to predict stock price or market movement is invaluable to investors in the stock market. Over the years, several soft computing techniques have been used to analyze various stock markets to retrieve knowledge to guide investors on when to buy or sell. This paper surveys over 100 published articles that focus on the application of soft computing techniques to forecast stock markets. The aim of this paper is to present a coherent of information on various soft computing techniques employed for stock market prediction. This research work will enable researchers in this field to know the current trend as well as help to inform their future research efforts. From the surveyed articles, it is evident that researchers have firmly focused on the development of hybrid prediction models and substantial work has also been done on the use of social media data for stock market prediction. It is also revealing that most studies have focused on the prediction of stock prices in emerging market

    XgBoost Hyper-Parameter Tuning Using Particle Swarm Optimization for Stock Price Forecasting

    Get PDF
    Investment in the capital market has become a lifestyle for millennials in Indonesia as seen from the increasing number of SID (Single Investor Identification) from 2.4 million in 2019 to 10.3 million in December 2022. The increase is due to various reasons, starting from the Covid-19 pandemic, which limited the space for social interaction and the easy way to invest in the capital market through various e-commerce platforms. These investors generally use fundamental and technical analysis to maximize profits and minimize the risk of loss in stock investment. These methods may lead to problem where subjectivity and different interpretation may appear in the process. Additionally, these methods are time consuming due to the need in the deep research on the financial statements, economic conditions and company reports. Machine learning by utilizing historical stock price data which is time-series data is one of the methods that can be used for the stock price forecasting. This paper proposed XGBoost optimized by Particle Swarm Optimization (PSO) for stock price forecasting. XGBoost is known for its ability to make predictions accurately and efficiently. PSO is used to optimize the hyper-parameter values of XGBoost. The results of optimizing the hyper-parameter of the XGBoost algorithm using the Particle Swarm Optimization (PSO) method achieved the best performance when compared with standard XGBoost, Long Short-Term Memory (LSTM), Support Vector Regression (SVR) and Random Forest. The results in RSME, MAE and MAPE shows the lowest values in the proposed method, which are, 0.0011, 0.0008, and 0.0772%, respectively. Meanwhile, the  reaches the highest value. It is seen that the PSO-optimized XGBoost is able to predict the stock price with a low error rate, and can be a promising model to be implemented for the stock price forecasting. This result shows the contribution of the proposed method

    Soft Computing Approaches to Stock Forecasting: A Survey

    Get PDF
    Soft computing techniques has been effectively applied in business, engineering, medical domain to solve problems in the past decade. However, this paper focuses on censoring the application of soft computing techniques for stock market prediction in the last decade (2010 - todate). Over a hundred published articles on stock price prediction were reviewed. The survey is done by grouping these published articles into: the stock market surveyed, input variable choices, summary of modelling technique applied, comparative studies, and summary of performance measures. This survey aptly shows that soft computing techniques are widely used and it has demonstrated widely acceptability to accurately use for predicting stock price and stock index behavior worldwide

    Techniques for Stock Market Prediction: A Review

    Get PDF
    Stock market forecasting has long been viewed as a vital real-life topic in economics world. There are many challenges in stock market prediction systems such as the Efficient Market Hypothesis (EMH), Nonlinearity, complex, diverse datasets, and parameter optimization. A stock's value on the stock market fluctuates due to many factors like previous trends of the stock, the current news, twitter feeds, any online customer feedbacks etc. In this paper, the literature is critically analysed on approaches used for stock market prediction in terms of stock datasets, features used, evaluation metrics used, statistical, machine learning and deep learning techniques along with the directions for the future. The focus of this review is on trend and value prediction for stocks. Overall, 68 research papers have been considered for review from years 1998-2023. From the review, Indian stock market datasets are found to be most frequently used datasets. Evaluation metrics used commonly are accuracy and Mean Absolute Percentage Error. ARIMA is reported as the most used frequently statistical technique for stick market prediction. Long-Short Term Memory and Support Vector Machine are the commonly used algorithms in stock market prediction. The advantages and disadvantages of frequently used evaluation metrics, machine learning, deep learning and statistical approaches are also included in this survey
    • …
    corecore