25,067 research outputs found

    Image analysis in quantitative metallography

    Get PDF
    Quantitative metallography (QM) deals with the relationships be¬tween multi-dimensional features of a metallographic sample and its projection/intersection on a two dimensional plane.Subsequentl• QM can be related to other properties of materials. Number of pa¬rameters to be measured for QM are numerous and time consuming and this has promoted the development of automatic image analyser by which, even, the routine quantitative measurements can be done easily and quickly. So, for quality control of industrial products, it plays an important role. With the availability of reliable automatic image analyser equipment, the quantitative characterisation of a metallurgical samples becomes easier and it takes less amount of time. At the same time reliable data can be generated with suitable software and hardware attached with modern microscope. The analysis modules of a metallurgical sample are broad and they are - grain size analysis, inclusion rating, percentage, volume & area fraction, porosity, particle size, image features etc. In this review article the importance of image analyser fur the quantification of a polished and etched surface has been discussed and some of the applications for quantitative metallography of metallurgical sample have also been highlighted

    Utilization of Image Intensifiers in Astronomy

    Get PDF
    In this paper we present the properties of image intensifiers, used together with fast TV cameras for astronomical purposes within the MAIA project(Meteor Automatic Imager and Analyser, primarily focused on observing meteoric events with high time resolution). The main objective of our paper is to evaluate the suitability of these devices for astronomical purposes in terms of noise, temporal and spectral analysis

    Automatic Generation of Minimal Cut Sets

    Get PDF
    A cut set is a collection of component failure modes that could lead to a system failure. Cut Set Analysis (CSA) is applied to critical systems to identify and rank system vulnerabilities at design time. Model checking tools have been used to automate the generation of minimal cut sets but are generally based on checking reachability of system failure states. This paper describes a new approach to CSA using a Linear Temporal Logic (LTL) model checker called BT Analyser that supports the generation of multiple counterexamples. The approach enables a broader class of system failures to be analysed, by generalising from failure state formulae to failure behaviours expressed in LTL. The traditional approach to CSA using model checking requires the model or system failure to be modified, usually by hand, to eliminate already-discovered cut sets, and the model checker to be rerun, at each step. By contrast, the new approach works incrementally and fully automatically, thereby removing the tedious and error-prone manual process and resulting in significantly reduced computation time. This in turn enables larger models to be checked. Two different strategies for using BT Analyser for CSA are presented. There is generally no single best strategy for model checking: their relative efficiency depends on the model and property being analysed. Comparative results are given for the A320 hydraulics case study in the Behavior Tree modelling language.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Utilization of Image Intensifiers in Astronomy

    Get PDF
    In this paper we present the properties of image intensifiers, used together with fast TV cameras for astronomical purposes within the MAIA project(Meteor Automatic Imager and Analyser, primarily focused on observing meteoric events with high time resolution). The main objective of our paper is to evaluate the suitability of these devices for astronomical purposes in terms of noise, temporal and spectral analysis

    Living Knowledge

    Get PDF
    Diversity, especially manifested in language and knowledge, is a function of local goals, needs, competences, beliefs, culture, opinions and personal experience. The Living Knowledge project considers diversity as an asset rather than a problem. With the project, foundational ideas emerged from the synergic contribution of different disciplines, methodologies (with which many partners were previously unfamiliar) and technologies flowed in concrete diversity-aware applications such as the Future Predictor and the Media Content Analyser providing users with better structured information while coping with Web scale complexities. The key notions of diversity, fact, opinion and bias have been defined in relation to three methodologies: Media Content Analysis (MCA) which operates from a social sciences perspective; Multimodal Genre Analysis (MGA) which operates from a semiotic perspective and Facet Analysis (FA) which operates from a knowledge representation and organization perspective. A conceptual architecture that pulls all of them together has become the core of the tools for automatic extraction and the way they interact. In particular, the conceptual architecture has been implemented with the Media Content Analyser application. The scientific and technological results obtained are described in the following
    corecore