34,724 research outputs found

    Reproducibility and speed of landmarking process in cephalometric analysis using two input devices: mouse-driven cursor versus pen

    Get PDF
    To define if the new portable appliances, like smartphone, iPad, small laptop and tablet can be used in cephalometric tracing without dropping out the validity of any measurement. METHODS:We investigated and compared the reproducibility and the speed of landmarks identification process on lateral X-rays in two input devices: a mouse-driven cursor and a pen used as input means in mobile devices. One expert located 22 landmarks on 15 lateral X-rays in a repeated measure design two times, at time T1 and T2, after at least one month. The Intraclass Correlation coefficient was used to evaluate the reproducibility for each landmark tracing and the agreement between the value derived from both input devices. Also, the mean errors in measurements, the standard deviation and the Friedman Test significans (P < 0.05) between both input were statistically evaluated. RESULTS:All landmarks had a high agreement and the Friedman Test indicated statistically significant differences (P<0.05) for the identification of Na, Po, Pt, PNS, Ba, Pg, Gn, UIE, UIA, APOcc and PPOcc landmarks. CONCLUSIONS:Even if the mouse input give higher agreement for landmark tracing the differences are really minimal and they can be ignored in private practice. We suggest the adequacy of pen input in clinical setting

    Do-It-Yourself Single Camera 3D Pointer Input Device

    Full text link
    We present a new algorithm for single camera 3D reconstruction, or 3D input for human-computer interfaces, based on precise tracking of an elongated object, such as a pen, having a pattern of colored bands. To configure the system, the user provides no more than one labelled image of a handmade pointer, measurements of its colored bands, and the camera's pinhole projection matrix. Other systems are of much higher cost and complexity, requiring combinations of multiple cameras, stereocameras, and pointers with sensors and lights. Instead of relying on information from multiple devices, we examine our single view more closely, integrating geometric and appearance constraints to robustly track the pointer in the presence of occlusion and distractor objects. By probing objects of known geometry with the pointer, we demonstrate acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio

    Designing an Adaptive Web Navigation Interface for Users with Variable Pointing Performance

    Get PDF
    Many online services and products require users to point and interact with user interface elements. For individuals who experience variable pointing ability due to physical impairments, environmental issues or age, using an input device (e.g., a computer mouse) to select elements on a website can be difficult. Adaptive user interfaces dynamically change their functionality in response to user behavior. They can support individuals with variable pointing abilities by 1) adapting dynamically to make element selection easier when a user is experiencing pointing difficulties, and 2) informing users about these pointing errors. While adaptive interfaces are increasingly prevalent on the Web, little is known about the preferences and expectations of users with variable pointing abilities and how to design systems that dynamically support them given these preferences. We conducted an investigation with 27 individuals who intermittently experience pointing problems to inform the design of an adaptive interface for web navigation. We used a functional high-fidelity prototype as a probe to gather information about user preferences and expectations. Our participants expected the system to recognize and integrate their preferences for how pointing tasks were carried out, preferred to receive information about system functionality and wanted to be in control of the interaction. We used findings from the study to inform the design of an adaptive Web navigation interface, PINATA that tracks user pointing performance over time and provides dynamic notifications and assistance tailored to their specifications. Our work contributes to a better understanding of users' preferences and expectations of the design of an adaptive pointing system

    Nomadic input on mobile devices: the influence of touch input technique and walking speed on performance and offset modeling

    Get PDF
    In everyday life people use their mobile phones on-the-go with different walking speeds and with different touch input techniques. Unfortunately, much of the published research in mobile interaction does not quantify the influence of these variables. In this paper, we analyze the influence of walking speed, gait pattern and input techniques on commonly used performance parameters like error rate, accuracy and tapping speed, and we compare the results to the static condition. We examine the influence of these factors on the machine learned offset model used to correct user input and we make design recommendations. The results show that all performance parameters degraded when the subject started to move, for all input techniques. Index finger pointing techniques demonstrated overall better performance compared to thumb-pointing techniques. The influence of gait phase on tap event likelihood and accuracy was demonstrated for all input techniques and all walking speeds. Finally, it was shown that the offset model built on static data did not perform as well as models inferred from dynamic data, which indicates the speed-specific nature of the models. Also, models identified using specific input techniques did not perform well when tested in other conditions, demonstrating the limited validity of offset models to a particular input technique. The model was therefore calibrated using data recorded with the appropriate input technique, at 75% of preferred walking speed, which is the speed to which users spontaneously slow down when they use a mobile device and which presents a tradeoff between accuracy and usability. This led to an increase in accuracy compared to models built on static data. The error rate was reduced between 0.05% and 5.3% for landscape-based methods and between 5.3% and 11.9% for portrait-based methods

    Control theoretic models of pointing

    Get PDF
    This article presents an empirical comparison of four models from manual control theory on their ability to model targeting behaviour by human users using a mouse: McRuer’s Crossover, Costello’s Surge, second-order lag (2OL), and the Bang-bang model. Such dynamic models are generative, estimating not only movement time, but also pointer position, velocity, and acceleration on a moment-to-moment basis. We describe an experimental framework for acquiring pointing actions and automatically fitting the parameters of mathematical models to the empirical data. We present the use of time-series, phase space, and Hooke plot visualisations of the experimental data, to gain insight into human pointing dynamics. We find that the identified control models can generate a range of dynamic behaviours that captures aspects of human pointing behaviour to varying degrees. Conditions with a low index of difficulty (ID) showed poorer fit because their unconstrained nature leads naturally to more behavioural variability. We report on characteristics of human surge behaviour (the initial, ballistic sub-movement) in pointing, as well as differences in a number of controller performance measures, including overshoot, settling time, peak time, and rise time. We describe trade-offs among the models. We conclude that control theory offers a promising complement to Fitts’ law based approaches in HCI, with models providing representations and predictions of human pointing dynamics, which can improve our understanding of pointing and inform design

    Quaternary pulse position modulation electronics for free-space laser communications

    Get PDF
    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits
    • …
    corecore