3 research outputs found

    Subjective Score Predictor: A New Evaluation Function of Distorted Image Quality

    Get PDF
    Image quality assessment (IQA) is a method to evaluate the perceptual performance of image. Many objective IQA algorithms are developed from the objective comparison of image features, which are mainly trained and evaluated from the ground truth of subjective scores. Due to the inconsistent experiment conditions and cumbersome observing processes of subjective experiments, it is imperative to generate the ground truth for IQA research via objective computation methods. In this paper, we propose a subjective score predictor (SSP) aiming to provide the ground truth of IQA datasets. In perfect accord with distortion information, the distortion strength of distorted image is employed as a dependent parameter. To further be consistent with subjective opinion, on the one hand, the subjective score of source image is viewed as a quality base value, and, on the other hand, we integrate the distortion parameter and the quality base value into a human visual model function to obtain the final SSP value. Experimental results demonstrate the advantages of the proposed SSP in the following aspects: effective performance to reflect the distortion strength, competitive ground truth, and valid evaluation for objective IQA methods as well as subjective scores

    Automatic Enhancement of Noisy Images Using Objective Evaluation of Image Quality

    No full text
    A new method for automatic enhancement of noisy images is presented. The most relevant feature of the proposed approach is a novel procedure for automatic parameter tuning that takes into account the histograms of the edge gradients. Thus a satisfactory compromise between smoothing and sharpening can be automatically found according to the human perception. The proposed method is favorably compared to other techniques in the literature

    Development of Some Novel Spatial-Domain and Transform-Domain Digital Image Filters

    Get PDF
    Some spatial-domain and transform-domain digital image filtering algorithms have been developed in this thesis to suppress additive white Gaussian noise (AWGN). In many occasions, noise in digital images is found to be additive in nature with uniform power in the whole bandwidth and with Gaussian probability distribution. Such a noise is referred to as Additive White Gaussian Noise (AWGN). It is difficult to suppress AWGN since it corrupts almost all pixels in an image. The arithmetic mean filter, commonly known as Mean filter, can be employed to suppress AWGN but it introduces a blurring effect. Image denoising is usually required to be performed before display or further processing like segmentation, feature extraction, object recognition, texture analysis, etc. The purpose of denoising is to suppress the noise quite efficiently while retaining the edges and other detailed features as much as possible
    corecore