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Image quality assessment (IQA) is a method to evaluate the perceptual performance of image. Many objective IQA algorithms
are developed from the objective comparison of image features, which are mainly trained and evaluated from the ground truth of
subjective scores. Due to the inconsistent experiment conditions and cumbersome observing processes of subjective experiments,
it is imperative to generate the ground truth for IQA research via objective computation methods. In this paper, we propose a
subjective score predictor (SSP) aiming to provide the ground truth of IQA datasets. In perfect accord with distortion information,
the distortion strength of distorted image is employed as a dependent parameter. To further be consistent with subjective opinion,
on the one hand, the subjective score of source image is viewed as a quality base value, and, on the other hand, we integrate the
distortion parameter and the quality base value into a human visual model function to obtain the final SSP value. Experimental
results demonstrate the advantages of the proposed SSP in the following aspects: effective performance to reflect the distortion
strength, competitive ground truth, and valid evaluation for objective IQA methods as well as subjective scores.

1. Introduction

Image quality assessment (IQA) is fundamental and impor-
tant in evaluating and improving the perceptual quality of
images, which is widely applied in image-based instrumen-
tation [1, 2]. The IQA problem can be addressed in objective
and subjective classes.

Over the years, various objective IQAmethods have been
proposed.According to the availability of reference image, the
objective image quality metrics is classified as full-reference
(FR), reduced-reference (RR), and no-reference (NR) [3].
Most existing methods are FR via comparing the distorted
image with a complete reference image. The simplest FR
metrics is themean squared error (MSE) and the peak signal-
to-noise ratio (PSNR). However, they both cast the image
quality on the pixel values without the structure of image and
human visual system (HVS). To overcome these drawbacks,
Wang et al. proposed the structural similarity index (SSIM)
to compare the local patterns on luminance and contrast [4].
Deriving from SSIM, some researchers developed a gradient-
based SSIM [5] and amultiscale SSIM [6]. However, the SSIM

and the modified SSIM IQA methods compare the features
within corresponding patches of reference and distorted
images, so they ignore the image curvature information [7].
To adequately investigate the visual disparity between a center
patch and its spatial neighborhoods, Zhou et al. proposed
an FR IQA scheme via comparing visual similarity in both
the interpatch and intrapatch ways in [7]. Since the reference
image is often not available in practice, NR-IQA methods
have become a good alternative to evaluating the distorted
image quality. To remedy the lack of prior knowledge of
reference images, most of NR-IQA algorithms are limited to
some specific distortions, dataset training, or IQA models.
For example, Jiang et al. designed the image quality metric
for the compressed remote sensing image assessments [8].
Based on training on dataset, Tang et al. learned a map
model from low-level features to image quality scores from
human observers [9]. With a multivariate Gaussian model
(MVG) of IQA, Mittal et al. proposed a blind image quality
analyzer via measuring the distance between the MVG fit of
image features from test image and a MVG model of natural
images [10]. In practice, their assumption is not satisfied
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well, so they failed in the various real applications.Therefore,
RR-IQA methods provide a lying solution between FR and
NR-IQA methods, which is based on partial information
about the reference image. For instance, Wang and Li et al.,
respectively, developed the RR image quality metrics using a
wavelet-domain natural image statistic model and a divisive
normalization-based image representation [11, 12].

Generally, all objective IQA metrics is to evaluate the
image quality in agreement with the subjective opinion of
human observers [13], so their performances are validated via
comparing with the subjective scores in open IQA datasets
such as LIVE [14], A57 [15], CSIQ [16], IVC [17], TID2008
[18], and Toyoma [19]. However, these datasets only have a
limited amount of images since the subjective experiments
are time-consuming and expensive [20]. Among the above
six datasets, the number of natural reference images is only
up to 30 within Toyoma. In practice, this is not enough to
generally cover the vast proliferation of image data, and it
is really not enough to reflect the performance of objective
IQA algorithms. In addition, the subjective scores could be
unfaithful to reflecting the ground truth of image quality
because of the various experimental conditions, individual
observers, and different processing methods of raw scores.
Thus, it is necessary to develop an objective predictor to
correctly represent the real quality of distortion image.

To predict the subjective scores of image quality, Kaya
et al. imitate the human observers with a trained multilayer
neural network based on extracted statistical features [21].
It requires many training samples including not only image
features but also subjective scores. To address the lack of
ground truth of image quality, Lu et al. calculate the objective
distortion score (ODS) from the logarithm of distortion
parameter 𝑝

𝑖
, that is, ln(𝑝

𝑖
) [22].The larger ODS value means

the worse image quality. This is the first work to provide
ground truth for IQA research according to a simple function
of the impaired distortion. However, referring to the analyzed
criteria of objective IQA [23], ODS has some problems in
terms of consistency, discrimination, and convergence. For
example, since ln(⋅) is a monotonically increased function,
the ODS is still increasing on larger 𝑝

𝑖
no matter that the

image quality becomes better or worse. On the other hand,
different distortions could result in same ODS values at same
distortion strengths, while the impaired degrees are obviously
different. To remain consistent with the subjective scores
(NODS), the ODS are mapped to the interval [0, 100], but
the normalization is limited by the difference of the evaluated
maximum and minimum values. More seriously, when the
distortion parameter is quite small, the ODS value is close to
minus infinity, which leads to failure of this normalizing.

As the evaluation of subjective scores faces the aforemen-
tioned problems, we design a subjective score predictor (SSP)
function to calculate the scores of distorted images. To reflect
the distortion strength in agreement with ground truth of
subjective scores, we combine the necessary knowledge of a
successful IQA algorithm design, including the information
of source image, distortion, and the human visual system
(HVS) [23]. In this paper, the SSP function is demonstrated
with three advantages. First, SSP unifies a visual perception
based model, so it partially avoids the individual differences

between observers on different distortions with different
levels. Second, the distortion information and subjective
score of source image are both integrated to make the
subjective score prediction more consistent with human-
based subjective scores. Third, an objective function is used
to calculate the final value. It is efficient and feasible, which
can reduce the cost and manpower. Therefore, the proposed
approach has stronger application in constructing various
IQA datasets to cover more source images such as high-
resolution remote sensing images and disgusting medical
disease images, which are difficult to test on human observers
in subjective experiments.

The rest of this paper is organized as follows: Section 2
introduces the SSP model, and Section 3 analyzes its char-
acteristics and extension. Its effectiveness is validated in
Section 4. Section 5 concludes this paper.

2. The Proposed Model

To reflect the subjective scores of image quality by an objec-
tive function, we should firstly consider the requirement of a
successful objective IQA algorithm. Inspired from the recent
work,which suggested that a successful IQAalgorithmdesign
should combine the knowledge of source image, distortion,
and HVS [23], we design our SSP function on information of
the source image, distortion, and HVS characteristic, which
are prior knowledge on constructing an IQA dataset.

2.1.The Source Image: Reference. In all open IQAdatasets, the
entire image databases are derived from some selected source
images with given distortions. Referring to the source images,
the distorted images are subjectively evaluated by human
observers, and then the raw scores are adjusted to obtain
the final subjective quality scores. From the perspective of
objective IQA, the source images are treated as reference
images, and the subjective observing is an FR IQA processing
in human eyes.Therefore, the information of source image 𝐼

𝑟

including its corresponding distortion level 𝑝
𝑟
and subjective

score 𝑆
𝑟
can be considered as reference information in SSP.

For all the public datasets, the source images are given with
perfect image quality, so subjective score 𝑆

𝑟
equals 100, and

distortion level 𝑝
𝑟
is at zero-distortion.

2.2. Distortion: Parameter. Usually, the distortion types
include noise, blur, compression, transmission, and intensity
deviation, which are involved in the open IQA datasets
[24]. Their parameters are standard deviation of noise 𝜎N,
standard deviation of blur kernel 𝜎B, bit rate of per pixel 𝑟BPP,
transmission signal-to-noise ratio 𝑟SNR, and intensity change
value VI, respectively.

For each distortion type, the image quality could mono-
tonically vary according to the strength of the distortion level.
Intuitively, if the distortion strength reaches one extreme, the
distortion is very little or even inexistent. This means that
the distortion has zero-distortion level, denoted as 𝑝

0
, such

as 𝜎N = 0 and 𝜎B = 0 for noise and blur, respectively. Ideally,
the distortion level of ground truth image is at zero-distortion
level 𝑝

0
. Following the psychological mechanism of image
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understanding, it is difficult to distinguish the levels of the
evaluated images by humanwhen they are impaired seriously
beyond a certain threshold. This threshold can be marked
as zero-score distortion level 𝑝

𝑡
. In a word, zero-distortion

level 𝑝
0
and zero-score distortion level 𝑝

𝑡
can portray the

distortion property in SSP.

2.3. HVS: Mechanism. HVS has complicated psychological
inferences and is not a direct translation of information [25].
A vision system is subdivided into multiple parts with quite
distinctive functions [26]. Based on the contrast sensitivity
function (CSF), HVS models are developed as a band-pass
or low-pass filter, which are reviewed by Kim and Allebach
in halftoning [27]. In the point of spatial frequency, the
most popular modulation transfer functions (MTF) of HVS
are Gaussian model, exponent model, Barten model, and
compound model [28, 29]. Recently, Bayesian brain theory
suggests that the brain works with an internal generative
mechanism for visual perception and image understanding
[30]. Therefore, we are devoted to look for a function to deal
with the signal processing approach of IQA and signify the
physiological and psychological mechanisms of perception.
Observing the popular CSF and MTF models in [27–29], the
exponential function is employed as a prototype. In the same
way, we depict the SSP function based on an exponential
function with the prior knowledge of the reference informa-
tion (distortion parameter 𝑝

𝑟
and subjective score 𝑆

𝑟
) and

the distortion information (zero-distortion parameter 𝑝
0
and

zero-score threshold 𝑝
𝑡
).

2.4. SSP: Function. Firstly, zero-distortion parameter 𝑝
0
and

zero-score threshold 𝑝
𝑡
are treated as a zero-point (high

score) and one-point (low score) of distortion strength. To
limit the strength of different distortions to a uniform inter-
val, input parameter 𝑝

𝑖
at ith-level distortion is normalized

by the difference between one-point 𝑝
𝑡
and zero-point 𝑝

0
.

Secondly, to ensure that the SSP has a corresponding score
referring to the subjective opinion of source image, the
distortion strength is considered as a relative one from input
parameter 𝑝

𝑖
to distortion level 𝑝

𝑟
of source image. Thirdly,

the power of the SSP function is adjusted by a positive fading
factor 𝑘 depending on the distortion type. Finally, the SSP is
defined as an exponential function in the following way:

SSP: 𝑆
𝑖
= 𝑆
𝑟
⋅ 𝑒
−𝑘⋅((𝑝𝑖−𝑝𝑟)/(𝑝𝑡−𝑝0)). (1)

Analyzing on this definition, themore seriously the distortion
degree is impaired, the less the SSP value becomes, which can
conform to the subjective expectation of human on image
quality. When the reference image is the ground truth with
zero-distortion 𝑝

0
, the formula can be simplified as

SSP: 𝑆
𝑖
= 100 ⋅ 𝑒

−𝑘⋅((𝑝𝑖−𝑝0)/(𝑝𝑡−𝑝0)). (2)

As shown in (2), the SSP is only faithful to the actual
distortion information of test images. In particular, for IQA
datasets, this can avoid the individual differences of observers
and the unfaithful subjective scores because of complex
experimental conditions.

3. The Analysis of SSP

The SSP function can satisfy the following mathematical
conditions.

(i) Bounded. To make the subjective experiments significant,
the impaired distortion level is always between 𝑝

0
and 𝑝

𝑡
.

Therefore, the input parameter have two extreme values 𝑝
0

and 𝑝
𝑡
. Based on simplified formula (2), when 𝑝

𝑖
= 𝑝
0
, we

can get 𝑆
𝑖
= 𝑆
𝑟
= 100. When 𝑝

𝑖
= 𝑝
𝑡
, 𝑆
𝑖
= 100/𝑒

𝑘. Therefore,
the SSP can be bounded in [100/𝑒𝑘, 100].

(ii) Monotonous. According to the variation trend of image
quality with the increasing numerical value of distortion
strength, the distortions can be divided into increasing-type
distortion (the larger numerical value of distortion strength
reflecting less distortion can generate better image) and
decreasing-type distortion (the larger numerical value of
distortion strength reflecting more distortion can generate
worse image).

For increasing-type distortion, zero-point distortion 𝑝
0

with higher quality score should have a larger numerical value
than one-point distortion 𝑝

𝑡
with less quality score, that is,

𝑝
𝑡
< 𝑝
0
. Then, the distortion parameter is 𝑝

𝑡
≤ 𝑝
𝑖
≤ 𝑝
0
.

Given two distortion parameters 𝑝
𝑡
≤ 𝑝
𝑖1
< 𝑝
𝑖2
≤ 𝑝
0
, their

relative distances satisfy (𝑝
𝑖1
−𝑝
0
)/(𝑝
𝑡
−𝑝
0
) > (𝑝

𝑖2
−𝑝
0
)/(𝑝
𝑡
−

𝑝
0
). Therefore, according to the monotonically decreasing

property of 𝑒−𝑥, the final results of SSP meet 𝑆𝑝
𝑖1
< 𝑆𝑝
𝑖2
.

In contrast, for decreasing-type distortion, since the
image quality score holds decreasing change regulation to
the larger numerical value of distortion strength, we can get
𝑝
0
< 𝑝
𝑡
. If two input parameters are 𝑝

0
≤ 𝑝
𝑖1
< 𝑝
𝑖2
≤ 𝑝
𝑡
, their

relative distances satisfy (𝑝
𝑖1
−𝑝
0
)/(𝑝
𝑡
−𝑝
0
) < (𝑝

𝑖2
−𝑝
0
)/(𝑝
𝑡
−

𝑝
0
), and then 𝑆𝑝

𝑖1
> 𝑆𝑝
𝑖2
.

(iii) Invertible. From formula (1), we can obtain the image
quality score of reference image 𝑆

𝑟
via transposition opera-

tion:

𝑆
𝑟
= 𝑆
𝑖
⋅ 𝑒
𝑘⋅((𝑝𝑖−𝑝𝑟)/(𝑝𝑡−𝑝0)) = 𝑆

𝑖
⋅ 𝑒
𝑘⋅(−(𝑝𝑟−𝑝𝑖)/(𝑝𝑡−𝑝0))

= 𝑆
𝑖
⋅ 𝑒
−𝑘⋅((𝑝𝑟−𝑝𝑖)/(𝑝𝑡−𝑝0)).

(3)

Similarly, it obeys the basic prototype of formula (1), only
exchanging the information of the reference image and test
image.

(iv) Recursive. If objective assessment 𝑆𝑝
𝑖1

at parameter
𝑝
𝑖1

is known, the subjective score of reference image
can be obtained according formula (3) as 𝑆

𝑟
= 𝑆𝑝

𝑖1
⋅

𝑒
−𝑘⋅((𝑝𝑟−𝑝𝑖1)/(𝑝𝑡−𝑝0)). Thus, at parameter 𝑝

𝑖2
of the same distor-

tion, we can calculate the objective assessment as

𝑆𝑝
𝑖2
= 𝑆
𝑟
⋅ 𝑒
−𝑘⋅((𝑝𝑖2−𝑝𝑟)/(𝑝𝑡−𝑝0))

= 𝑆𝑝
𝑖1
⋅ 𝑒
−𝑘⋅((𝑝𝑟−𝑝𝑖1)/(𝑝𝑡−𝑝0)) ⋅ 𝑒

−𝑘⋅((𝑝𝑖2−𝑝𝑟)/(𝑝𝑡−𝑝0))

= 𝑆𝑝
𝑖1
⋅ 𝑒
−𝑘⋅((𝑝𝑖2−𝑝𝑖1)/(𝑝𝑡−𝑝0)).

(4)
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Table 1: The characteristic information of LIVE II and the parameter setting of our proposed SSP function.

Distortion type JPEG 2000 JPEG White noise Gaussian blur Fast fading
Variable 𝑝

𝑖
𝑟BPP 𝑟BPP 𝜎N 𝜎B 𝑟SNR

Min(𝑝
𝑖
) 0.03 0.15 0.01 0.41 15.50

Max(𝑝
𝑖
) 3.15 3.33 1.99 14.99 26.10

Max(DMOS) 74.71 80.88 75.67 84.48 76.97
Min(DMOS) 19.96 17.90 18.17 19.71 18.34
Range(DMOS) 54.75 62.98 57.50 64.77 58.63
DMOS(𝑝

𝑖
) trend ↓ ↓ ↑ ↑ ↓

MOS(𝑝
𝑖
) trend ↑ ↑ ↓ ↓ ↑

𝑝0 3.5 4 0 0 45
𝑝
𝑡

0.01 0.1 5 20 1
𝑘 1.4 1.7 3.5 2.5 1.8

This formula also follows the definition of SSP in formula (1),
which refers to the distorted image with 𝑆𝑝

𝑖1
score of image

quality at parameter 𝑝
𝑖1
.

(v) Multiple Distortions. Our SSP can be extended into
multiple distortions easily. Constructing one IQA dataset
with multiple distortions, the reference image is sequentially
polluted by different distortions. Given that the source image
is ground truth and two distortion parameters 𝑝

𝑖1
and 𝑝

𝑖2

on different distortions with factors 𝑘
1
and 𝑘

2
, respectively,

multiple distorted image can be obtained fromfirst distortion
with factor 𝑘

1
and then the distortion with 𝑘

2
.Therefore, after

the first distortion is finished, the SSP with reference to the
ground truth for the captured distorted image is

𝑆𝑝
𝑖1
= 𝑆
𝑟
⋅ 𝑒
−𝑘1 ⋅((𝑝𝑖1−𝑝01)/(𝑝𝑡1−𝑝01)). (5)

After the first distortion is finished, 𝑆𝑝
𝑖1
is the reference for

the second distortion. Therefore, the SSP with reference to
𝑆𝑝
𝑖1
is

𝑆𝑝
𝑖2
= 𝑆𝑝
𝑖1
⋅ 𝑒
−𝑘2 ⋅((𝑝𝑖2−𝑝02)/(𝑝𝑡2−𝑝02)). (6)

Combining formula (5) into (6), we can get the final SSP to
the ground truth as

𝑆𝑝
𝑖2
= 𝑆𝑝
𝑖1
⋅ 𝑒
−𝑘2 ⋅((𝑝𝑖2−𝑝02)/(𝑝𝑡2−𝑝02))

= 𝑆
𝑟
⋅ 𝑒
−𝑘1 ⋅((𝑝𝑖1−𝑝01)/(𝑝𝑡1−𝑝01)) ⋅ 𝑒

−𝑘2 ⋅((𝑝𝑖2−𝑝02)/(𝑝𝑡2−𝑝02))

= 𝑆
𝑟
⋅ 𝑒
−𝑘1 ⋅((𝑝𝑖1−𝑝01)/(𝑝𝑡1−𝑝01))−𝑘2 ⋅((𝑝𝑖2−𝑝02)/(𝑝𝑡2−𝑝02)).

(7)

Overall, the SSP model can obtain bounded, mono-
tonous, invertible, and recursive properties, so that it is
easy to extend for multiple distortions. The SSP function is
mainly dependent on objective distortion parameters, so it
usually keeps the same order as the distortion degree order.
In addition, SSP avoids the subjective experiments, which
has diversity in experimental circumstances, individual dif-
ferences, and different scenes, and it is easily obtained and
faithful to the real image quality.

4. Experiments

This section presents the experiments on dataset LIVE II
[14] owing to the given distortion parameters, in which 29
high-resolution 24 bits/pixel color images are distorted by
five distortion types: JPEG 2000, JPEG, white noise, Gaussian
blur, and transmission errors using a fast fading Rayleigh
channel model [31]. The subjective scores are reflected by
the difference of the Mean Opinion Score (MOS) between
reference image and distorted image, naming it as Difference
Mean Opinion Score (DMOS).

Initialization (the setting of the parameters). For SSP, three
parameters including zero-distortion parameter 𝑝

0
, zero-

score threshold parameter𝑝
𝑡
, and fading factor 𝑘 are required

to initialize at first for each distortion.
To obtain 𝑝

0
and 𝑝

𝑡
in SSP, we tabulate the distortion

information, the subjective opinions, and their correspond-
ing relationship in LIVE II dataset in Table 1. Considering the
human distinctive characteristic, prior variables 𝑝

0
and 𝑝

𝑡
are

empirically initialized as the values in italic type at the bottom
of Table 1.

Fading factor 𝑘 is based on the expectation that SSP and
MOS are equivalent; that is, we expect that the SSP can hold
consistency with MOS scores in terms of the upper limit, the
lower limit, and the range of values. Since the clear reference
image quality is viewed as 100, the MOS can be simply equal
to 100-DMOS. To find the appropriate 𝑘 for each distortion
type, we adjusted fading factor 𝑘 from 0.5 to 20 by step
0.1 in our experiment. Figure 1 illuminates the average of
the differences in the upper limit, the lower limit, and the
range of SSP values at each 𝑘 sample. As shown in Figure 1,
there exists only one point with least average difference for
each distortion, which indicates the SSP fitting MOS well.
Therefore, we can set 𝑘 = 1.4, 1.7, 3.5, 2.5, and 1.8 as the fixed
fading factors of JPEG 2000, JPEG, white noise, Gaussian
blur, and transmission errors, respectively, also recorded at
the bottom of Table 1.

Experiment 1 (the effectiveness of the proposed SSP). To
measure the effectiveness of our SSP function, we compare
SSP with the subjective scores DMOS in dataset and recent
NODS index [22]. In this experiment, the linear correlation
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Table 2: PLCC and SROCC between distortion strengths and image quality scores including DMOS, NODS, and SSP.

Distortion type Image number PLCC SROCC
DMOS NODS SSP DMOS NODS SSP

JPEG 2000 169 −0.7830 0.8642 0.9872 −0.8949 1 1
JPEG 175 −0.8019 0.9227 0.9814 −0.8680 1 1
White noise 145 0.7947 0.8414 −0.9864 0.9841 1 −1
Gaussian blur 145 0.7808 0.8792 −0.9727 0.9583 1 −1
Fast fading 145 −0.6438 0.9975 0.9983 −0.6486 1 1

JPEG 2000
JPEG
White noise

Gaussian blur
Fast fading

k = 3.5
k = 2.5

k = 1.8

k = 1.4

k = 1.7

1 2 3 4 5 6 7 8 9 100.5
k samples
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Figure 1: The average differences between SSP and 100-DMOS at 𝑘
samples.

is tested between distortion strengths and image quality
scores (i.e., SSP, DMOS, and NODS) using Pearson linear
correlation coefficient (PLCC) and Spearman rank order
correlation coefficient (SROCC).

One thing needs to be paid attention here. Our method
directly evaluates the image quality, similar to the subjective
MOS opinion of human expectation. In contrast, the NODS
index is a distortion score more like the image quality
difference DMOS from the reference image. Therefore, the
correlation between proposed SSP function and distortion
is opposite to that between DMOS and distortion, while
this correlation of NODS should be the same as DMOS.
Intuitively, for the increasing-type distortions such as JPEG
2000, JPEG, and fast fading, SSP should generate positive
correlation values since the better image quality is from the
larger distortion parameter, while theDMOS andNODShave
negative values in both PLCCand SROCC. In contrast, for the
decreasing-type distortions such as white noise and Gaussian
blur, the PLCC and SROCC values are negative in SSP but
positive in DMOS and NODS, since the distortion parameter
increasing causes the image quality to be worse.

Table 2 tabulates the values of PLCC and SROCC
between distortion strengths and the DMOS, NODS, and
SSP scores, respectively. From it, we can observe that the
DMOS expresses positive correlation for the decreasing-type
distortions such as white noise and Gaussian blur, while
negative correlation is responded for the increasing-type

distortions such as JPEG 2000, JPEG, and fast fading. SSP
holds opposite correlation compared with DMOS, which is
consistent with the previous analysis. However, the NODS
demonstrate an invariable positive correlation no matter
what the distortion type is. Therefore, SSP can reasonably
catch the human expectation about image quality with the
strength changing for different distortions, similar to DMOS,
but the NODS index has failed on the increasing-type ones.
In addition, both of SSP and NODS show stronger linear
correlation in PLCC and SROCC than DMOS, since they
exclude the various changes in experimental conditions and
raw score processing error of DMOS. Furthermore, since SSP
is objectively calculated from the relative degree instead of the
direct numerical value of distortion parameter, and SSP has
better linear correlation than NODS in PLCC.

Experiment 2 (the comparison as ground truth). SSP is
proposed to provide the ground truth of distorted image
quality, similar to DMOS scores. To compare the SSP scores
with theDMOSmore distinctly, Figure 2 scatters the scores of
DMOS and SSP for different distortions and gives the linear
trends via 𝑥 − detrend(𝑥) in MATLAB.

Comparing with DMOS, we can get three appearances
from Figure 2: (i) similar effectivity: the linear trend line of
SSP holds a complementary changing characteristic well with
DMOS, so that it can reflect the overall variation trend of
DMOS. (ii) Obvious discriminability: SSP is monotonically
changeswith the increasing of distortion numerical value. For
one certain distortion strength, SSP has unique value, while
the DMOS values present some shock changes. (iii) Objective
quantitation: SSP only depends on the distortion information
without the influence of the image scene and human subjec-
tive factors, so it demonstrates that the proposed SSP function
is seamlessly meets the ground truth of IQA.

In the distortion distinction, we test whether the SSP
changes reasonably with the real image quality. Figure 3
shows a group of distorted images for a house. The corre-
sponding values of DMOS and SSP are shown in Table 3.
Figures 3(a)–3(c) are the distorted images of fast fading, and
their signal-to-noise ratio are 17.9, 20.3, and 22.7, respectively.
In theory, the quality scores should increase from (a) to (c).
The SSP values in Table 3 follow this rule, while the DMOS
values do not make sense for Figure 3(b). Figures 3(d)-3(e)
are both compressed images with similar bit rate per pixel via
JPEG and JPEG 2000. As we well know, JPEG 2000 has better
compression property than JPEG, so the image in Figure 3(e)
should have high score compared to Figure 3(d). It is logical
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Figure 2: The scores and trend lines of DMOS and SSP for different distortion categories.

Table 3: DMOS and SSP values for the distorted images in Figure 3.

Items Subfigures in Figure 3
Figure 3(b) Figure 3(c) Figure 3(d) Figure 3(e) Figure 3(f)

Distortion Fast fading JPEG JPEG 2000
Strength 17.9 20.3 22.7 1.8851 1.8156
DMOS 29.5508 37.7149 22.8825 21.0245 21.2732
SSP 33.0009 36.4053 40.1610 39.7771 50.8805

for SSP values in Table 3, but the DMOS has almost the same
value.

Experiment 3 (the validation for IQA methods). The ground
truth of image quality is always used to evaluate the perfor-
mance of IQA algorithms. In this experiment, we test whether
SSP scores can evaluate the IQA algorithms. As mentioned
before, the objective IQA methods are classified as FR, RR,
and NR.Therefore, we representatively select the popular FR

multiscale structural similarity (MS-SSIM) [6], the recent RR
entropic differencing (RRED) [32], and NR spatial-spectral
entropy-based quality (SSEQ) [33] to test on the total 634
distorted images in LIVE II dataset. Then, we calculate the
PLCC and SROCC between the values of IQA algorithms
and the ground truth DMOS or SSP scores. Table 4 records
the average values of PLCC and SROCC for each IQA index.
Regardless of the positive and negative direction, the IQA
algorithms of the PLCC and SROCC values are ranked in
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(a) Fast fading image 𝑟SNR = 17.9 (b) Fast fading image 𝑟SNR = 20.3 (c) Fast fading image 𝑟SNR = 22.7

(d) JEPG image 𝑟BPP = 1.8851 (e) JEPG 2000 image 𝑟BPP = 1.8156 (f) Ground truth image

Figure 3: Group of distorted images for a house image (f).

Table 4: The average and rank of PLCC and SROCC between
ground truth and IQA results.

IQA algorithms PLCC (rank) SROCC (rank)
DMOS SSP DMOS SSP

MS-SSIM −0.8077 (3) 0.6640 (3) −0.9462 (2) 0.8883 (2)
RRED 0.8797 (2) −0.6986 (2) 0.9478 (1) −0.8899 (1)
SSEQ 0.9178 (1) −0.7643 (1) 0.9152 (3) −0.8821 (3)

the parentheses following the correlation strength. It can
be seen from that the IQA algorithms have the same rank
evaluated by SSP scores as the DMOS scores. Thus, the SSP
is applicable as ground truth to compare the performance of
different IQA algorithms.

Experiment 4 (the stabilization for multiple distortions). For
many open IQA datasets, the subjective studies obtain MOS
or DMOS on corrupted images by only one distortion. How-
ever, the majority of images could be corrupted by multiple
distortions in practical consumption [34]. It motivated us to
extend our SSP as formula (6) for the ground truth ofmultiple
distortion dataset.

We simulate the modified SSP with LIVE Multiply Dis-
torted Image Quality Database (LIVE MD) [35] to evaluate
the usability of our extended method. There exist two kinds
of multiple distortions firstly blur followed by JPEG or noise.
The detailed information about distortion is shown in Table 5.
Referring to Table 1 of LIVE II, the fading factors are selected
as 2.5, 1.7, and 3.5 for blur, JPEG, and noise, respectively.
Also, the zero-distortion and zero-score parameters of blur
and noise are set to be the same as Table 1 because of same
quantitative indicators of distortion strengths, while the JPEG
with different distortion indicator are set according to the
parameter setting limitations of Matlab imwrite function.

To evaluate the stabilization of our SSP method, the
LIVE MD dataset is partitioned into 15 groups with the
same combination of two distortion parameters on 15 source
images. Tables 6 and 7 give the mean and deviation values
of DMOS and SSP (SSP1: the reference score is the MOS of
source images; SSP2: the reference score is 100) for blur +
JPEG and blur + noise, respectively. Compared with DMOS,
the deviation of SSP is less considering the changes of MOS
values for source images.This cannot be avoided in subjective
experiments, since the observers are always influenced by the
contents of the images [35]. In contrast, the SSP from the real
distortion parameters is objective and stable, which can be
easily observed from SSP2 in Tables 6 and 7.

More directly, Figure 4 records the mean scores of 100-
DMOS and SSP. It demonstrates that the 100-DMOS values
are almost the same for blur + JPEG and blur + noise, while
the larger differences appear in level 0 of JPEG andNoise. For
the proposed SSP, although it has small values for blur + JPEG
owing to large parameter 𝑝

0
of JPEG distortion, it is effective

in distinguishing the qualities of different distortion levels,
integrating the multiple distortions, and keeping constant at
same distortion degree.

5. Conclusion

A novel metric SSP for distorted image quality has been
proposed in this paper, which is derived from distortion
information based on an exponent prototype of human visual
model. Tested on LIVE II dataset, the SSP shows strong
correlation with the distortion strength, effective consistency
with the subjective scoreDMOS, and reasonable ground truth
to evaluate the IQA algorithms. Moreover, the proposed SSP
hasmore stabilization thanDMOS to handle the combination
of the multiple distortions on LIVE MD dataset. Therefore,
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Table 5: The distortion information in the LIVE MD Database.

Distortion level First distortion Second distortion
Gaussian blur (𝜎B) JPEG (𝑄) Noise (𝜎N)

0 0 — —
1 3.2 27 0.0447
2 3.9 18 0.0894
3 4.6 12 0.1789
𝑝0 0 100 0
𝑝
𝑡

20 0 5
𝑘 2.5 1.7 3.5

Table 6: The mean (deviation) statistics of DMOS and SSP scores for blur + JPEG.

Number Blur level SSP1 SSP2 JPEG level DMOS SSP1 SSP2
1

0 89.51 (4.36) 100 (0)
1 11.16 (4.12) 25.88 (1.26) 28.91 (0)

2 2 16.89 (4.52) 22.21 (1.08) 24.81 (0)
3 3 25.08 (8.35) 20.05 (0.98) 22.40 (0)
4

1 60.00 (2.93) 67.03 (0)

0 34.85 (9.16) 60.00 (2.93) 67.03 (0)
5 1 40.23 (7.07) 17.35 (0.85) 19.38 (0)
6 2 42.97 (7.13) 14.88 (0.73) 16.63 (0)
7 3 48.86 (8.15) 13.44 (0.66) 15.02 (0)
8

2 54.97 (2.68) 61.42 (0)

0 52.81 (8.69) 54.97 (2.68) 61.42 (0)
9 1 54.36 (6.39) 15.89 (0.77) 17.76 (0)
10 2 56.52 (6.93) 13.64 (0.67) 15.24 (0)
11 3 59.64 (7.55) 12.32 (0.6) 13.76 (0)
12

3 50.37 (2.46) 56.27 (0)

0 65.11 (7.25) 50.37 (2.46) 56.27 (0)
13 1 65.2 (6.34) 14.56 (0.71) 16.27 (0)
14 2 65.68 (7.03) 12.49 (0.61) 13.96 (0)
15 3 69.58 (6.71) 11.28 (0.55) 12.61 (0)

Average 61.99 (3.02) 69.26 (0) 47.26 (7.03) 23.96 (1.17) 26.76 (0)
The source images: mean (DMOS) is 89.508; deviation is 4.3648.
SSP1: using the MOS values in LIVE MD dataset as reference scores 𝑆𝑟 in formula (6).
SSP2: setting reference scores 𝑆𝑟 in formula (6) as 100.

100-DMOS (blur + JPEG)
SSP (blur)
SSP (blur + JPEG)

100-DMOS (blur + noise)
SSP (blur + noise)

0 1 2 3 0 1 2 3 0 1 2 3 1 2 3
1 2 3 0

JPEG/noise
Blur

Distortion level
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30
40
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60
70
80
90
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Figure 4: The average scores of SSP and 100-DMOS for LIVE MD database.
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Table 7: The mean (deviation) statistics of DMOS and SSP scores for blur + noise.

Number Blur level SSP1 SSP2 Noise level DMOS SSP1 SSP2
1

0 89.51 (4.36) 100 (0)
1 7.18 (3.26) 86.75 (4.23) 96.92 (0)

2 2 29.14 (5.97) 84.08 (4.1) 93.93 (0)
3 3 36.55 (6.42) 78.97 (3.85) 88.23 (0)
4

1 60.00 (2.93) 67.03 (0)

0 28.91 (8.11) 60.00 (2.93) 67.03 (0)
5 1 33.09 (7.17) 58.15 (2.84) 64.97 (0)
6 2 45.46 (7.12) 56.36 (2.75) 62.97 (0)
7 3 50.93 (5.6) 52.94 (2.58) 59.14 (0)
8

2 54.97 (2.68) 61.42 (0)

0 49.04 (8.95) 54.97 (2.68) 61.42 (0)
9 1 52.89 (7.92) 53.28 (2.6) 59.52 (0)
10 2 56.86 (7.12) 51.64 (2.52) 57.69 (0)
11 3 59.55 (6.46) 48.5 (2.37) 54.19 (0)
12

3 50.37 (2.46) 56.27 (0)

0 63.77 (7.5) 50.37 (2.46) 56.27 (0)
13 1 66.33 (6.92) 48.82 (2.38) 54.54 (0)
14 2 68.52 (7.86) 47.31 (2.31) 52.86 (0)
15 3 70.23 (6.39) 44.44 (2.17) 49.65 (0)

Average 61.99 (3.02) 69.26 (0) 47.9 (6.85) 58.44 (2.85) 65.29 (0)
The source images: mean (DMOS) is 89.508; deviation is 4.3648.
SSP1: using the MOS values in LIVE MD dataset as reference scores 𝑆𝑟 in formula (6).
SSP2: setting reference scores 𝑆𝑟 in formula (6) as 100.

it is feasible to integrate the proposed SSP into IQA dataset
to not only directly generate the ground truth of various
images but also improve the subjective experiments with
more distortion categories.
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