8,476 research outputs found

    Incident detection using data from social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) on 15/03/2018, available online: https://ieeexplore.ieee.org/document/8317967/citations#citations The accepted version of the publication may differ from the final published version.© 2017 IEEE. Due to the rapid growth of population in the last 20 years, an increased number of instances of heavy recurrent traffic congestion has been observed in cities around the world. This rise in traffic has led to greater numbers of traffic incidents and subsequent growth of non-recurrent congestion. Existing incident detection techniques are limited to the use of sensors in the transportation network. In this paper, we analyze the potential of Twitter for supporting real-time incident detection in the United Kingdom (UK). We present a methodology for retrieving, processing, and classifying public tweets by combining Natural Language Processing (NLP) techniques with a Support Vector Machine algorithm (SVM) for text classification. Our approach can detect traffic related tweets with an accuracy of 88.27%.Published versio

    Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning

    Get PDF
    International audienceThe increasing availability of large-scale Global Positioning System (GPS) data stemming from in-vehicle embedded terminal devices enables the design of methods deriving road network cartographic information from drivers' recorded traces. Some machine learning approaches have been proposed in the past to train automatic road network map inference, and recently this approach has been successfully extended to infer road attributes as well, such as speed limitation or number of lanes. In this paper, we address the problem of detecting traffic signals from a set of vehicle speed profiles, under a classification perspective. Each data instance is a speed versus distance plot depicting over a hundred profiles on a 100-meter-long road span. We proposed three different ways of deriving features: the first one relies on the raw speed measurements; the second one uses image recognition techniques; and the third one is based on functional data analysis. We input them into most commonly used classification algorithms and a comparative analysis demonstrated that a functional description of speed profiles with wavelet transforms seems to outperform the other approaches with most of the tested classifiers. It also highlighted that Random Forests yield an accurate detection of traffic signals, regardless of the chosen feature extraction method, while keeping a remarkably low confusion rate with stop signs
    • …
    corecore