6,337 research outputs found

    Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning

    Get PDF
    Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.Comment: Accepted for publication on Pattern Recognition, 201

    Structure Preserving Large Imagery Reconstruction

    Get PDF
    With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as image clustering, 3D scene reconstruction, and other big data applications. However, such tasks are not easy due to the fact the retrieved photos can have large variations in their view perspectives, resolutions, lighting, noises, and distortions. Fur-thermore, with the occlusion of unexpected objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct re-alistic scenes. In this paper, we propose a structure-based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing, such as image localization, object retrieval, and scene reconstruction. Our experiments show that this approach achieves favorable results that outperform existing state-of-the-art techniques

    Visionary Ophthalmics: Confluence of Computer Vision and Deep Learning for Ophthalmology

    Get PDF
    Ophthalmology is a medical field ripe with opportunities for meaningful application of computer vision algorithms. The field utilizes data from multiple disparate imaging techniques, ranging from conventional cameras to tomography, comprising a diverse set of computer vision challenges. Computer vision has a rich history of techniques that can adequately meet many of these challenges. However, the field has undergone something of a revolution in recent times as deep learning techniques have sprung into the forefront following advances in GPU hardware. This development raises important questions regarding how to best leverage insights from both modern deep learning approaches and more classical computer vision approaches for a given problem. In this dissertation, we tackle challenging computer vision problems in ophthalmology using methods all across this spectrum. Perhaps our most significant work is a highly successful iris registration algorithm for use in laser eye surgery. This algorithm relies on matching features extracted from the structure tensor and a Gabor wavelet – a classically driven approach that does not utilize modern machine learning. However, drawing on insight from the deep learning revolution, we demonstrate successful application of backpropagation to optimize the registration significantly faster than the alternative of relying on finite differences. Towards the other end of the spectrum, we also present a novel framework for improving RANSAC segmentation algorithms by utilizing a convolutional neural network (CNN) trained on a RANSAC-based loss function. Finally, we apply state-of-the-art deep learning methods to solve the problem of pathological fluid detection in optical coherence tomography images of the human retina, using a novel retina-specific data augmentation technique to greatly expand the data set. Altogether, our work demonstrates benefits of applying a holistic view of computer vision, which leverages deep learning and associated insights without neglecting techniques and insights from the previous era

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy

    Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid

    Full text link
    Deep neural networks have been widely adopted in recent years, exhibiting impressive performances in several application domains. It has however been shown that they can be fooled by adversarial examples, i.e., images altered by a barely-perceivable adversarial noise, carefully crafted to mislead classification. In this work, we aim to evaluate the extent to which robot-vision systems embodying deep-learning algorithms are vulnerable to adversarial examples, and propose a computationally efficient countermeasure to mitigate this threat, based on rejecting classification of anomalous inputs. We then provide a clearer understanding of the safety properties of deep networks through an intuitive empirical analysis, showing that the mapping learned by such networks essentially violates the smoothness assumption of learning algorithms. We finally discuss the main limitations of this work, including the creation of real-world adversarial examples, and sketch promising research directions.Comment: Accepted for publication at the ICCV 2017 Workshop on Vision in Practice on Autonomous Robots (ViPAR

    Nuclei/Cell Detection in Microscopic Skeletal Muscle Fiber Images and Histopathological Brain Tumor Images Using Sparse Optimizations

    Get PDF
    Nuclei/Cell detection is usually a prerequisite procedure in many computer-aided biomedical image analysis tasks. In this thesis we propose two automatic nuclei/cell detection frameworks. One is for nuclei detection in skeletal muscle fiber images and the other is for brain tumor histopathological images. For skeletal muscle fiber images, the major challenges include: i) shape and size variations of the nuclei, ii) overlapping nuclear clumps, and iii) a series of z-stack images with out-of-focus regions. We propose a novel automatic detection algorithm consisting of the following components: 1) The original z-stack images are first converted into one all-in-focus image. 2) A sufficient number of hypothetical ellipses are then generated for each nuclei contour. 3) Next, a set of representative training samples and discriminative features are selected by a two-stage sparse model. 4) A classifier is trained using the refined training data. 5) Final nuclei detection is obtained by mean-shift clustering based on inner distance. The proposed method was tested on a set of images containing over 1500 nuclei. The results outperform the current state-of-the-art approaches. For brain tumor histopathological images, the major challenges are to handle significant variations in cell appearance and to split touching cells. The proposed novel automatic cell detection consists of: 1) Sparse reconstruction for splitting touching cells. 2) Adaptive dictionary learning for handling cell appearance variations. The proposed method was extensively tested on a data set with over 2000 cells. The result outperforms other state-of-the-art algorithms with F1 score = 0.96

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices
    • 

    corecore