2 research outputs found

    Visual Clutter Study for Pedestrian Using Large Scale Naturalistic Driving Data

    Get PDF
    Some of the pedestrian crashes are due to driver’s late or difficult perception of pedestrian’s appearance. Recognition of pedestrians during driving is a complex cognitive activity. Visual clutter analysis can be used to study the factors that affect human visual search efficiency and help design advanced driver assistant system for better decision making and user experience. In this thesis, we propose the pedestrian perception evaluation model which can quantitatively analyze the pedestrian perception difficulty using naturalistic driving data. An efficient detection framework was developed to locate pedestrians within large scale naturalistic driving data. Visual clutter analysis was used to study the factors that may affect the driver’s ability to perceive pedestrian appearance. The candidate factors were explored by the designed exploratory study using naturalistic driving data and a bottom-up image-based pedestrian clutter metric was proposed to quantify the pedestrian perception difficulty in naturalistic driving data. Based on the proposed bottom-up clutter metrics and top-down pedestrian appearance based estimator, a Bayesian probabilistic pedestrian perception evaluation model was further constructed to simulate the pedestrian perception process

    Temporal Mapping of Surveillance Video for Indexing and Summarization

    Get PDF
    This work converts the surveillance video to a temporal domain image called temporal profile that is scrollable and scalable for quick searching of long surveillance video by human operators. Such a profile is sampled with linear pixel lines located at critical locations in the video frames. It has precise time stamp on the target passing events through those locations in the field of view, shows target shapes for identification, and facilitates the target search in long videos. In this paper, we first study the projection and shape properties of dynamic scenes in the temporal profile so as to set sampling lines. Then, we design methods to capture target motion and preserve target shapes for target recognition in the temporal profile. It also provides the uniformed resolution of large crowds passing through so that it is powerful in target counting and flow measuring. We also align multiple sampling lines to visualize the spatial information missed in a single line temporal profile. Finally, we achieve real time adaptive background removal and robust target extraction to ensure long-term surveillance. Compared to the original video or the shortened video, this temporal profile reduced data by one dimension while keeping the majority of information for further video investigation. As an intermediate indexing image, the profile image can be transmitted via network much faster than video for online video searching task by multiple operators. Because the temporal profile can abstract passing targets with efficient computation, an even more compact digest of the surveillance video can be created
    corecore