9,942 research outputs found

    A Multi-Stream Approach for Video Understanding

    Full text link
    The automatic annotation of higher-level semantic information in long-form video content is still a challenging task. The Deep Video Understanding (DVU) Challenge aims at catalyzing progress in this area by offering common data and tasks. In this paper, we present our contribution to the 3rd DVU challenge. Our approach consists of multiple information streams extracted from both the visual and the audio modality. The streams can build on information generated by previous streams to increase their semantic descriptiveness. Finally, the output of all streams can be aggregated in order to produce a graph representation of the input movie to represent the semantic relationships between the relevant characters

    A content-based retrieval system for UAV-like video and associated metadata

    Get PDF
    In this paper we provide an overview of a content-based retrieval (CBR) system that has been specifically designed for handling UAV video and associated meta-data. Our emphasis in designing this system is on managing large quantities of such information and providing intuitive and efficient access mechanisms to this content, rather than on analysis of the video content. The retrieval unit in our system is termed a "trip". At capture time, each trip consists of an MPEG-1 video stream and a set of time stamped GPS locations. An analysis process automatically selects and associates GPS locations with the video timeline. The indexed trip is then stored in a shared trip repository. The repository forms the backend of a MPEG-211 compliant Web 2.0 application for subsequent querying, browsing, annotation and video playback. The system interface allows users to search/browse across the entire archive of trips and, depending on their access rights, to annotate other users' trips with additional information. Interaction with the CBR system is via a novel interactive map-based interface. This interface supports content access by time, date, region of interest on the map, previously annotated specific locations of interest and combinations of these. To develop such a system and investigate its practical usefulness in real world scenarios, clearly a significant amount of appropriate data is required. In the absence of a large volume of UAV data with which to work, we have simulated UAV-like data using GPS tagged video content captured from moving vehicles

    ELAN as flexible annotation framework for sound and image processing detectors

    Get PDF
    Annotation of digital recordings in humanities research still is, to a largeextend, a process that is performed manually. This paper describes the firstpattern recognition based software components developed in the AVATecH projectand their integration in the annotation tool ELAN. AVATecH (AdvancingVideo/Audio Technology in Humanities Research) is a project that involves twoMax Planck Institutes (Max Planck Institute for Psycholinguistics, Nijmegen,Max Planck Institute for Social Anthropology, Halle) and two FraunhoferInstitutes (Fraunhofer-Institut für Intelligente Analyse- undInformationssysteme IAIS, Sankt Augustin, Fraunhofer Heinrich-Hertz-Institute,Berlin) and that aims to develop and implement audio and video technology forsemi-automatic annotation of heterogeneous media collections as they occur inmultimedia based research. The highly diverse nature of the digital recordingsstored in the archives of both Max Planck Institutes, poses a huge challenge tomost of the existing pattern recognition solutions and is a motivation to makesuch technology available to researchers in the humanities

    Automated speech and audio analysis for semantic access to multimedia

    Get PDF
    The deployment and integration of audio processing tools can enhance the semantic annotation of multimedia content, and as a consequence, improve the effectiveness of conceptual access tools. This paper overviews the various ways in which automatic speech and audio analysis can contribute to increased granularity of automatically extracted metadata. A number of techniques will be presented, including the alignment of speech and text resources, large vocabulary speech recognition, key word spotting and speaker classification. The applicability of techniques will be discussed from a media crossing perspective. The added value of the techniques and their potential contribution to the content value chain will be illustrated by the description of two (complementary) demonstrators for browsing broadcast news archives

    DALES: Automated Tool for Detection, Annotation, Labelling and Segmentation of Multiple Objects in Multi-Camera Video Streams

    Get PDF
    In this paper, we propose a new software tool called DALES to extract semantic information from multi-view videos based on the analysis of their visual content. Our system is fully automatic and is well suited for multi-camera environment. Once the multi-view video sequences are loaded into DALES, our software performs the detection, counting, and segmentation of the visual objects evolving in the provided video streams. Then, these objects of interest are processed in order to be labelled, and the related frames are thus annotated with the corresponding semantic content. Moreover, a textual script is automatically generated with the video annotations. DALES system shows excellent performance in terms of accuracy and computational speed and is robustly designed to ensure view synchronization

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning
    corecore