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Abstract

In this paper, we propose a new software tool called DALES to extract semantic information
from multi-view videos based on the analysis of their visual content. Our system is fully auto-
matic and is well suited for multi-camera environment. Once the multi-view video sequences are
loaded into DALES, our software performs the detection, counting, and segmentation of the vi-
sual objects evolving in the provided video streams. Then, these objects of interest are processed
in order to be labelled, and the related frames are thus annotated with the corresponding seman-
tic content. Moreover, a textual script is automatically generated with the video annotations.
DALES system shows excellent performance in terms of accuracy and computational speed and
is robustly designed to ensure view synchronization.

1 Introduction

With the increasing use of electronic equipments, storage devices and computational systems for ap-
plications such as video surveillance (Kumar et al., 2010) and sport event monitoring (Alsuqayhi and
Olszewska, 2013), the development of automated tools to process the resulting big amount of visual data
in order to extract meaningful information becomes a necessity.

In particular, the design of multi-view video annotation systems is a challenging, new task. It aims
to process multi-view video streams which consist of video sequences of a dynamic scene captured
simultaneously by multiple cameras. Such multi-input system is dedicated to automatically analyse the
visual content of the multi-camera records and to generate semantic and visual annotations, in the way
to assist users in the understanding and reasoning about large amount of acquired data.

For this purpose, data should be processed through different, major stages such as object-of-interest
detection and segmentation, frame labelling, and video annotation. In the literature, most of the works
dealing with the analysis of multi-camera video streams are focused on the sole task of tracking multiple,
moving objects and use different approaches such as background subtraction (Diaz et al., 2013), Bayesian
framework (Hsu et al., 2013), particle filter (Choi and Yoo, 2013), or Cardinalized Probability Hypothesis
Density (CPHD) based filter (Lamard et al., 2013). On the other hand, research on video annotation has
lead to the development of several efficient systems (Town, 2004; Natarajan and Nevatia, 2005; Bai et
al., 2007; Vrusias et al., 2007), but all designed for a single camera video stream input.

In this paper, we describe a full system which takes multi-camera video stream inputs and performs vi-
sual data processing to generate multi-view video annotations. Our system has been developed in context
of outdoor video-surveillance and is an automatic Detection, Annotation, LabElling and Segmentation
(DALES) software tool. It presents also the advantage to have an entire chain of data processing from
visual to textual one, reducing thus the semantic gap.

As camera calibration is in general an expensive process (Black et al., 2002) and in real life, surveil-
lance application measurements of camera parameters are not readily available (Guler et al., 2003),
DALES system does not involve any camera calibration parameters.
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Figure 1: Overview of the flow of data within DALES software: (a) Context level Data Flow Diagram;
(b) Second level Data Flow Diagram.

DALES provides not only the automatic annotation of multi-view video streams, but also performs,
in multi-camera environment, tasks such as multiple object-of-interest detection and segmentation, tar-
get counting and labelling, and image annotations. Our approach could cope with any dynamic scene
recorded by pan-tilt-zoom (PTZ) static cameras with overlapping color views, unlike systems such as
(Kettnaker and Zabih, 1999) based on non-overlapping cameras. The acquired multi-view sequences
could contain complex backgrounds, moving objects or noisy foregrounds, and present illumination
variations or poor resolution.

Hence, the contribution of this paper is twofold:

• the automated, textual annotation of multi-camera video streams based on visual features;

• the development of a full, automatic system covering all the phases from multiple, visual multi-
motion target detection to multi-view video annotation and text-script generation.

The paper is structured as follows. In Section 2, we describe our DALES system for fast, multiple
video-object detection, segmentation, labeling and effective multi-view video annotation. Our tool has
been successfully tested on standard, real-world video-surveillance dataset as reported and discussed in
Section 3. Conclusions are presented in Section 4.

2 DALES System

DALES system architecture is presented in Section 2.1, while its two main computational stages, one at
the object-of-interest level, the second one at the frame/video levels are described in Sections 2.2-2.3 and
Section 2.4, respectively.

2.1 System Architecture
DALES software tool has been prototyped according to the Rapid Application Development (RAD)
methodology and using object-oriented approach (C++, 2011). The data flow diagrams (DFDs) shown
in Figs. 1 (a)-(b) display the flow of data within different stages of the system. DFDs give an account
of the type of data input, the processing involved with these data as well as the final data we get, each
higher level of DFDs elaborating the system further.

In order to start the computation of multi-view, multiple object-of-interest detection and counting,
target segmentation and labelling, multi-stream video annotations and script generation, DALES system
requires multi-view camera synchronization. This is achieved in the multiple views by checking the
correspondence of the file names of the files in all the views during the loading phase (Figs. 2(a), 3(a)).

On the other hand, DALES could be used as a viewer of annotated, multi-view videos by loading the
generated text script (Fig. 2(b)).
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Figure 2: The initialisation of DALES software could be done either by providing (a) the video sequence
folder name, in order to use the software to process the multi-view video; or by providing (b) a text script
with video annotation, in order to run the software to visualize the frames and corresponding annotations.

2.2 Multiple-Object Detection, Segmentation, and Counting

A number of solutions exists for detecting multiple objects of interest in video scenes (Olszewska and
McCluskey, 2011; Olszewska, 2011; Olszewska, 2012b). In particular, background subtraction has long
been used in the literature as it provides a useful approach to both detect and segment objects of interest.
This method could be computed by difference between two consecutive frames (Archetti et al., 2006),
by subtracting the current frame from the background (Toyama et al., 1995; Haritaoglu et al., 2000), or
combining both frame difference and background subtraction techniques (Huang et al., 2007; Yao et al.,
2009).

In our scenario, images I(x,y) we consider may be taken from very different cameras, different light-
ing, etc. For that, we compute blobs separately in each of the views. The blobs are defined by labeled
connected regions, which are obtained by background subtraction. The latter technique consists in com-
puting the difference between the current image intensity I(x,y) and a background model, and afterwards,
in extracting the foreground.

To model the background, we adopt the running Gaussian average (RGA) (Wren et al., 1997), charac-
terized by the mean µb and the variance σ2

b, rather than, for example, the Gaussian mixture model (GMM)
(Stauffer and Grimson, 1999; Friedman and Russell, 1997; Zivkovic and van der Heijden, 2004), since
the RGA method is much more suitable for real-time tracking.

Next, the foreground is determined by

F(x,y) =

{
1 if |I(x,y)−µb| > n ·σb, with n ∈ N0,
0 otherwise.

(1)

Finally, morphological operations (Haralick, 1988) are applied to the extracted foreground F , in order
to exploit the existing information on the neighboring pixels,

f (x,y) = Morph(F(x,y)). (2)

2.3 Object Labeling

In this work, the detected and segmented object from a frame is automatically labelled by comparing
it with a given example object based on the Scale Invariant Feature Transform (SIFT) descriptors (Ol-
szewska, 2012a).
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Algorithm 1 Matching Algorithm
Given A′ = A,B′ = B,M = ∅,

for all ai ∈ A′ do
for all b j ∈ B′ do

repeat
if

dP(ai,b j) = min
b∈B′ dP(ai,b)

∧ dP(b j,ai) = min
a∈A′ dP(b j,a)

∧ dP(ai,b j) ≤ dH(A,B)
∧ dP(b j,ai) ≤ dH(A,B)

then

(ai,b j) ⊂ M

∧ A′ = A\{ai}∧B′ = B\{b j}

end if
until A′ 6= ∅∨B′ 6= ∅

end for
end for
return M

The main steps of our labelling process are (i) the detection of object’s SIFT features which are robust
to rotation, translation, scale changes as well as some viewpoint variations, (ii) their matching by means
of the Embedded Double Matching Algorithm (Algorithm 1) and (iii) the label inheritance. Moreover,
our approach does not require any training and thus is online compatible.

The comparison between the query object and the candidate one is performed in the feature space in
order to be more computationally effective and to be more robust towards noise and affine transformation,
and is followed by the computation of an associated similarity measure dS(A,B), which is computed as
follows

dS(A,B) =
#M

#A+#B
2

, (3)

with A and B, the sets of SIFT features of the query and the candidate objects, respectively, and M, the
set of the double-matched ones (Alqaisi et al., 2012).

The decision that a candidate object contains similar content to the query one is taken based on the fact
that the similarity measure dS(A,B) is above a given threshold. In the case when the similarity measure
dS(A,B) is below the given threshold, the candidate is rejected.

Finally, once the decision that a candidate object contains similar content to the query one has been
taken, the label of the candidate object is automatically mapped with the predefined label of the example
object.

2.4 Multi-View Annotations
Hence, by using different objects’ examples, all the frames from the video dataset are indexed with
the relevant semantic labels based on their visual content similarity, while the objects of interest are
automatically labeled and localized within these frames (Olszewska, 2012a).

Unlike (Evans et al., 2013), which uses an early fusion, where all the cameras are used to make a
decision about detection and tracking of the objects of interest, DALES system performs a late fusion.
Indeed, in our system, objects of interest are detected and labelled in individual cameras independently.
Next, the results are combined on the majority voting principle based on the semantic consistency of
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Figure 3: Snapshots of DALES software windows, in the phase of: (a) loaded multi views; (b) detected
moving objects.

the labels in sequential frames and across multiple camera views, rather than exploring geometrical
correspondences of objects as in (Dai and Payandeh, 2013).

3 Experiments and Discussion

To validate the DALES tool, we have applied our system on the standard dataset (PETS, 2001) consisting
of video-surveillance dynamic scene recorded by two PTZ cameras. This produces two videos. Each
contains 2688 frames, whose average resolution is of 576x768 pixels and which were captured in outdoor
environment. This database owns challenges of multi-view video stream, as well as quantity, pose,
motion, size, appearance and scale variations of the objects of interest, i.e. people and cars.

All the experiments have been run on a computer with Intel Core 2 Duo Pentium T9300, 2.5 GHz,
2Gb RAM, and using our DALES software implemented with C++ (C++, 2011).

Some examples of the results of our DALES system are presented in Fig. 3(b). These frames present
difficult situations such as poor foreground/background contrast or light reflection.

To assess the detection accuracy of DALES system, we adopt the standard criteria (Izadi and Saeedi,
2008) as follows:

detection rate (DR) =
T P

T P+FN
, (4)

f alse detection rate (FAR) =
FP

FP+T P
, (5)

with T P, true positive, FP, false positive, and FN, false negative.

The labelling accuracy of DALES system could be assessed using the following standard criterion:

accuracy =
T P+T N

T P+T N +FP+FN
, (6)

with T N, true negative.

In Table 1, we have reported the average detection and false alarm rates of our DALES method against
the rates achieved by (Izadi and Saeedi, 2008), while in Table 2, we have displayed the average accuracy
of object-of-interest labelling of our DALES method against the rate obtained by (Athanasiadis et al.,
2007).
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Table 1: Average detection rates of object-of-interests in video frames.

(Izadi and Saeedi, 2008) DALES
average detection rate (DR) 91.3% 91.6%
average false alarm rate (FAR) 9.5% 4.9%

Table 2: Average accuracy of object-of-interest labelling in video frames.

(Athanasiadis et al., 2007) DALES
average accuracy 85% 95%

From Tables 1-2, we can conclude that our DALES system provides reliable detection and counting
of objects of interest in multi-camera environment, and that the multiple-object labelling is very accurate
as well, outperforming state-of-the art techniques. DALES total precision to annotate multi-view videos
is therefore very high.

For all the dataset, the average computational speed of our DALES software is in the range of few
seconds, whereas the viewer function of DALES software takes only few milliseconds to process. Hence,
our developed system could be used in context of online scene analysis.

4 Conclusions

Reliable, multi-view annotation of large amount of real-time visual data, such as surveillance videos or
sport event broadcasts, is a challenging topic we have copped with. For this purpose, we have developed
a new software tool called DALES which processes, in multi-camera environment, (i) multiple object-
of-interest detection and (ii) counting, (iii) target segmentation and (iv) labelling, (v) image annotations,
(vi) multi-stream video annotations and script generation. Moreover, our DALES software suits well as
a viewer to display a loaded script with the text annotations of the multi-camera video sequence and the
corresponding labelled multi-view images.

Our system shows excellent performance compared to the ones found in the literature, on one hand,
for multiple-target detection and segmentation and, on the other hand, for object labeling. Multi-stream
annotations with DALES are thus computationally efficient and accurate.
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