106 research outputs found

    Natively probabilistic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.Includes bibliographical references (leaves 129-135).I introduce a new set of natively probabilistic computing abstractions, including probabilistic generalizations of Boolean circuits, backtracking search and pure Lisp. I show how these tools let one compactly specify probabilistic generative models, generalize and parallelize widely used sampling algorithms like rejection sampling and Markov chain Monte Carlo, and solve difficult Bayesian inference problems. I first introduce Church, a probabilistic programming language for describing probabilistic generative processes that induce distributions, which generalizes Lisp, a language for describing deterministic procedures that induce functions. I highlight the ways randomness meshes with the reflectiveness of Lisp to support the representation of structured, uncertain knowledge, including nonparametric Bayesian models from the current literature, programs for decision making under uncertainty, and programs that learn very simple programs from data. I then introduce systematic stochastic search, a recursive algorithm for exact and approximate sampling that generalizes a popular form of backtracking search to the broader setting of stochastic simulation and recovers widely used particle filters as a special case. I use it to solve probabilistic reasoning problems from statistical physics, causal reasoning and stereo vision. Finally, I introduce stochastic digital circuits that model the probability algebra just as traditional Boolean circuits model the Boolean algebra.(cont.) I show how these circuits can be used to build massively parallel, fault-tolerant machines for sampling and allow one to efficiently run Markov chain Monte Carlo methods on models with hundreds of thousands of variables in real time. I emphasize the ways in which these ideas fit together into a coherent software and hardware stack for natively probabilistic computing, organized around distributions and samplers rather than deterministic functions. I argue that by building uncertainty and randomness into the foundations of our programming languages and computing machines, we may arrive at ones that are more powerful, flexible and efficient than deterministic designs, and are in better alignment with the needs of computational science, statistics and artificial intelligence.by Vikash Kumar Mansinghka.Ph.D

    The embedded systems design challenge

    Get PDF
    We summarize some current trends in embedded systems design and point out some of their characteristics, such as the chasm between analytical and computational models, and the gap between safety-critical and best-effort engineering practices. We call for a coherent scientific foundation for embedded systems design, and we discuss a few key demands on such a foundation: the need for encompassing several manifestations of heterogeneity, and the need for constructivity in design. We believe that the development of a satisfactory embedded systems design science provides a timely challenge and opportunity for reinvigorating computer scienc

    A fast and verified software stack for secure function evaluation

    Get PDF
    We present a high-assurance software stack for secure function evaluation (SFE). Our stack consists of three components: i. a verified compiler (CircGen) that translates C programs into Boolean circuits; ii. a verified implementation of Yao’s SFE protocol based on garbled circuits and oblivious transfer; and iii. transparent application integration and communications via FRESCO, an open-source framework for secure multiparty computation (MPC). CircGen is a general purpose tool that builds on CompCert, a verified optimizing compiler for C. It can be used in arbitrary Boolean circuit-based cryptography deployments. The security of our SFE protocol implementation is formally verified using EasyCrypt, a tool-assisted framework for building high-confidence cryptographic proofs, and it leverages a new formalization of garbled circuits based on the framework of Bellare, Hoang, and Rogaway (CCS 2012). We conduct a practical evaluation of our approach, and conclude that it is competitive with state-of-the-art (unverified) approaches. Our work provides concrete evidence of the feasibility of building efficient, verified, implementations of higher-level cryptographic systems. All our development is publicly available.POCI-01-0145-FEDER-006961, FCT-PD/BD/113967/2015info:eu-repo/semantics/publishedVersio

    Fundamental components of deep learning : a category-theoretic approach

    Get PDF
    Deep learning, despite its remarkable achievements, is still a young field. Like the early stages of many scientific disciplines, it is marked by the discovery of new phenomena, ad-hoc design decisions, and the lack of a uniform and compositional mathematical foundation. From the intricacies of the implementation of backpropagation, through a growing zoo of neural network architectures, to the new and poorly understood phenomena such as double descent, scaling laws or in-context learning, there are few unifying principles in deep learning. This thesis develops a novel mathematical foundation for deep learning based on the language of category theory. We develop a new framework that is a) end-to-end, b) uniform, and c) not merely descriptive, but prescriptive, meaning it is amenable to direct implementation in programming languages with sufficient features. We also systematise many existing approaches, placing many existing constructions and concepts from the literature under the same umbrella. In Part I, the theory, we identify and model two main properties of deep learning systems: they are parametric and bidirectional. We expand on the previously defined construction of categories and Para to study the former, and define weighted optics to study the latter. Combining them yields parametric weighted optics, a categorical model of artificial neural networks, and more: constructions in Part I have close ties to many other kinds of bidirectional processes such as Bayesian updating, value iteration, and game theory. Part II justifies the abstractions from Part I, applying them to model backpropagation, architectures, and supervised learning. We provide a lens-theoretic axiomatisation of differentiation, covering not just smooth spaces, but discrete settings of Boolean circuits as well. We survey existing, and develop new categorical models of neural network architectures. We formalise the notion of optimisers and lastly, combine all the existing concepts together, providing a uniform and compositional framework for supervised learning.Deep learning, despite its remarkable achievements, is still a young field. Like the early stages of many scientific disciplines, it is marked by the discovery of new phenomena, ad-hoc design decisions, and the lack of a uniform and compositional mathematical foundation. From the intricacies of the implementation of backpropagation, through a growing zoo of neural network architectures, to the new and poorly understood phenomena such as double descent, scaling laws or in-context learning, there are few unifying principles in deep learning. This thesis develops a novel mathematical foundation for deep learning based on the language of category theory. We develop a new framework that is a) end-to-end, b) uniform, and c) not merely descriptive, but prescriptive, meaning it is amenable to direct implementation in programming languages with sufficient features. We also systematise many existing approaches, placing many existing constructions and concepts from the literature under the same umbrella. In Part I, the theory, we identify and model two main properties of deep learning systems: they are parametric and bidirectional. We expand on the previously defined construction of categories and Para to study the former, and define weighted optics to study the latter. Combining them yields parametric weighted optics, a categorical model of artificial neural networks, and more: constructions in Part I have close ties to many other kinds of bidirectional processes such as Bayesian updating, value iteration, and game theory. Part II justifies the abstractions from Part I, applying them to model backpropagation, architectures, and supervised learning. We provide a lens-theoretic axiomatisation of differentiation, covering not just smooth spaces, but discrete settings of Boolean circuits as well. We survey existing, and develop new categorical models of neural network architectures. We formalise the notion of optimisers and lastly, combine all the existing concepts together, providing a uniform and compositional framework for supervised learning

    Towards Practical Secure Neural Network Inference: The Journey So Far and the Road Ahead

    Get PDF
    Neural networks (NNs) have become one of the most important tools for artificial intelligence (AI). Well-designed and trained NNs can perform inference (e.g., make decisions or predictions) on unseen inputs with high accuracy. Using NNs often involves sensitive data: depending on the specific use case, the input to the NN and/or the internals of the NN (e.g., the weights and biases) may be sensitive. Thus, there is a need for techniques for performing NN inference securely, ensuring that sensitive data remains secret. In the past few years, several approaches have been proposed for secure neural network inference. These approaches achieve better and better results in terms of efficiency, security, accuracy, and applicability, thus making big progress towards practical secure neural network inference. The proposed approaches make use of many different techniques, such as homomorphic encryption and secure multi-party computation. The aim of this survey paper is to give an overview of the main approaches proposed so far, their different properties, and the techniques used. In addition, remaining challenges towards large-scale deployments are identified

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore