8 research outputs found

    DeepRA: Predicting Joint Damage From Radiographs Using CNN with Attention

    Full text link
    Joint damage in Rheumatoid Arthritis (RA) is assessed by manually inspecting and grading radiographs of hands and feet. This is a tedious task which requires trained experts whose subjective assessment leads to low inter-rater agreement. An algorithm which can automatically predict the joint level damage in hands and feet can help optimize this process, which will eventually aid the doctors in better patient care and research. In this paper, we propose a two-staged approach which amalgamates object detection and convolution neural networks with attention which can efficiently and accurately predict the overall and joint level narrowing and erosion from patients radiographs. This approach has been evaluated on hands and feet radiographs of patients suffering from RA and has achieved a weighted root mean squared error (RMSE) of 1.358 and 1.404 in predicting joint level narrowing and erosion Sharp van der Heijde (SvH) scores which is 31% and 19% improvement with respect to the baseline SvH scores, respectively. The proposed approach achieved a weighted absolute error of 1.456 in predicting the overall damage in hands and feet radiographs for the patients which is a 79% improvement as compared to the baseline. Our method also provides an inherent capability to provide explanations for model predictions using attention weights, which is essential given the black box nature of deep learning models. The proposed approach was developed during the RA2 Dream Challenge hosted by Dream Challenges and secured 4th and 8th position in predicting overall and joint level narrowing and erosion SvH scores from radiographs

    A Deep Learning-Based Automatic Object Detection Method for Autonomous Driving Ships

    Get PDF
    An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own. Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years. In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated a Sea-object Image Dataset (SID) specifically for this project. Then, by utilizing a pre-trained RetinaNet model on a large-scale object detection dataset named Microsoft COCO, we further fine-tune it on our SID dataset. We focused on sea objects that may potentially cause collisions or other types of maritime accidents. Our final model can effectively detect various types of floating or surrounding objects and classify them into one of the ten predefined significant classes, which are buoy, ship, island, pier, person, waves, rocks, buildings, lighthouse, and fish. Experimental results have demonstrated its good performance

    A Comparison of Fixed Threshold CFAR and CNN Ship Detection Methods for S-band NovaSAR Images

    Get PDF
    NovaSAR is a commercial S-band Synthetic Aperture Radar (SAR) small satellite, built and operated by SSTL in the UK. One of its primary mission objectives is to carry out maritime surveillance and monitoring for security and defence applications. An investigation was carried out into comparing and contrasting conventional and new methods to perform automated ship detection in NovaSAR images. The outcome of this investigation could show the potential effectiveness of ship detection using spaceborne S-band SAR for Maritime Domain Awareness (MDA). The conventional approach is to apply a suitable distribution model to characterise sea surface clutter, followed by the implementation of a fixed threshold, Constant False Alarm Rate (CFAR) detection algorithm. In comparison, a RetinaNet-based convolutional neural network (CNN)solution was developed and trained on an open-source C-band dataset in order to determine the validity of applying non-native training data to S-band imagery. The detection performance was then compared with the CFAR technique, finding that for two selected test acquisitions a CNN-based ship detection algorithm was able to outperform a fixed threshold, CFAR-based method in the absence of native training data. CNN ship detection performance was further improved by applying transfer learning to a native S-band NovaSAR image dataset

    Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery

    No full text
    Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method
    corecore