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ABSTRACT 

NovaSAR is a commercial S-band Synthetic Aperture Radar (SAR) small satellite, built and operated by SSTL in the 

UK. One of its primary mission objectives is to carry out maritime surveillance and monitoring for security and defence 

applications. An investigation was carried out into comparing and contrasting conventional and new methods to 

perform automated ship detection in NovaSAR images. The outcome of this investigation could show the potential 

effectiveness of ship detection using spaceborne S-band SAR for Maritime Domain Awareness (MDA). 

The conventional approach is to apply a suitable distribution model to characterise sea surface clutter, followed by the 

implementation of a fixed threshold, Constant False Alarm Rate (CFAR) detection algorithm. In comparison, a 

RetinaNet-based convolutional neural network (CNN) solution was developed and trained on an open-source C-band 

dataset in order to determine the validity of applying non-native training data to S-band imagery. The detection 

performance was then compared with the CFAR technique, finding that for two selected test acquisitions a CNN-based 

ship detection algorithm was able to outperform a fixed threshold, CFAR-based method in the absence of native 

training data. CNN ship detection performance was further improved by applying transfer learning to a native S-band 

NovaSAR image dataset. 

INTRODUCTION 

NovaSAR Mission 

NovaSAR is a small (430kg) commercial S-band 

Synthetic Aperture Radar (SAR) satellite, built by SSTL 

in the UK and launched in September 2018. It is capable 

of acquiring images with up to 6m resolution in Stripmap 

mode, and also features a Maritime mode with a 400km 

swath. In addition, the satellite hosts an Automatic 

Identification System (AIS) receiver to aid ship 

identification. The main focus of the mission is to serve 

as a demonstrator of low cost space-based SAR. One of 

the primary objectives is to demonstrate Maritime 

Domain Awareness (MDA) for security applications, 

including the prevention of illegal fishing. The global 

economic impact of illegal and unreported fishing losses 

has previously been estimated at between $10-23.5 

billion annually1. British maritime protected areas are 

distributed across the globe, and are therefore difficult to 

monitor without space-based Earth Observation (EO) 

assets. Other objectives for the UK government in this 

domain that space-based EO may be able to contribute to 

could include: 

 Deterring arms and narcotics smuggling 

 Countering terrorism and counter-piracy operations 

 Monitoring movement of refugees and preventing 

people trafficking 

 Protecting vital maritime trade, including energy 

transportation routes 

 Protecting the integrity of UK and British Overseas 

Territories marine areas 

 Marine pollution detection and attribution 

 Sea ice monitoring and shallow bathymetry to aid 

safe transit 

 Supporting overseas evacuation operations of 

British citizens  

 Search and rescue 

The contemporaneous collection of both SAR images 

and AIS signals over maritime areas provides two 

complementary streams of geospatial intelligence that 

can be applied to the above problems. AIS information 

is not considered reliable enough on its own for a number 

of reasons, including: 

  AIS transponders can be switched off 

  Information broadcast such as location, vessel name 

or unique identifier can be fabricated 

  Low probability of detection by satellite receivers 

over congested areas2 

Ship Detection 

Ships present a highly reflective cross-section to radar, 

with multiple opportunities for double-bounce 

backscattering. They therefore tend to appear bright in 

SAR images in comparison to the relatively dark sea 

background, and are theoretically easy to detect. 

However, in ports or rough sea conditions there can be a 

lot of clutter present in the images, making this more 

difficult. Conventional automated detection techniques 

have operated on the basis of masking out the land and 

modelling the sea surface clutter according to one of a 

number of statistical distributions, with a Constant False 

Alarm Rate (CFAR) detection algorithm3. In recent 

years, methods including the Generalised Likelihood 

Ratio Test (GLRT)4 as well as deep learning/computer 
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vision techniques including Convolutional Neural 

Networks (CNN) have demonstrated improved detection 

performance over CFAR. 

Previous studies in this area have, however, utilised 

either Sentinel-1 (C-band), Gaofen-3 (C-band) or 

TerraSAR-X (X-band) SAR images, and the application 

of S-band data to this problem is believed to be a new 

area of research. It is unknown whether or not a CNN-

based methodology outperforms a CFAR-based one for 

S-band images. Additionally, the impact of applying 

training datasets made up of imagery of different 

band/resolution to the testing dataset has not previously 

been investigated in depth. This investigation was 

designed to determine, for S-band SAR imagery: 

i. Whether a CNN-based ship detection 

methodology could outperform a CFAR-based 

one 

ii. The impact on detection performance of 

training this CNN on C-band imagery, 

compared with training on a native S-band 

dataset. 

Performance Metrics and Terminology 

In the object detection field for CNNs, success is 

measured in terms of Intersection over union (IoU), 

precision, mean average precision (mAP) and recall. 

CFAR methodology uses probability of false alarm (Pfa) 

and probability of detection (Pd). 

Intersection over Union (IoU), also known as the Jaccard 

index 𝐽, measures the overlap between the true bounding 

box 𝐴 of an object in an image and the predicted 

bounding box 𝐵, as shown in Figure 1. 

 

Figure 1: Intersection (overlapping red area on the 

left) and Union (combined red area on the right) of 

two bounding boxes A and B. 

IoU is given by the equation: 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
                  (1) 

The intersection |𝐴 ∩ 𝐵| is the overlapping region, and 

the union |𝐴 ∪ 𝐵| is the total area of the combined region 

formed. 

Predictions can be described as True Positives (TP), 

False Negatives (FN) or False Positives (FP), determined 

by their IoU value. If the IoU of a predicted bounding 

box is above the threshold that has been set, the 

prediction is a true positive. If the IoU is below this 

threshold then the prediction is a false positive; there is 

not sufficient overlap between the prediction that has 

been made and the ground truth. This may occur when 

the object is present, but has not been bounded correctly, 

or when there is no object present. A false negative 

occurs when the object is present but no prediction is 

made. 

Precision is defined as the number of true positives out 

of the total number of positive predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (2) 

Qualitatively, this may be thought of as the proportion of 

predictions made that were correct. 

Recall is defined as the number of true positives out of 

the total number of true positives and false negatives, 

equivalent to the total number of ground truths: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                 (3) 

Qualitatively, this may be thought of as the proportion of 

objects which were detected. 

The F1 score is often used to combine precision and recall 

scores into a single metric, defined as the harmonic mean 

of the precision and recall: 

𝐹1 = (
𝑅𝑒𝑐𝑎𝑙𝑙−1+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1

2
)

−1

                  (4) 

This simplifies to: 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (5) 

Average precision (AP) is the precision averaged across 

all recall values. Mean average precision (mAP) takes all 

AP values for the classes and IoU thresholds considered 

and finds the mean of these. For a simple ship detection 

(rather than classification) system, there is only one class 

to consider (ship) and therefore the mAP for a given IoU 

is simply the average precision across all test images. 

Reducing the IoU threshold required for a detection, or 

in the context of a CFAR detector, raising the false alarm 

rate, would be expected to lead to an increased number 

of both true and false positives. This will in general have 

the effect of increasing the recall whilst lowering the 

precision, and vice versa if the IoU threshold or false 

alarm rate is raised. 
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CNN Training and Challenges 

Full-size SAR images will often contain more than 

10000 pixels. It is usual to segment the image into 

smaller sub-image tiles for training and detection 

purposes. 

Once the neural network has been trained, typically 

beginning from a set of pre-trained weights, the resulting 

model may be used for inference. In the wider object 

detection field, training datasets can range into the 

millions of images for problems involving multiple 

classes of objects. However, for ship detection, 

thousands of image tiles can be sufficient to obtain high 

levels of detection performance if classification between 

types of ships is not required. 

This still presents a problem for new systems during their 

first months or years of operational life, since a training 

dataset must first be accumulated through hundreds of 

acquisitions. These acquisitions should ideally feature 

globally distributed locations in a variety of sea states in 

order to maximise the robustness of the network and 

ensure its geo-generalisability.  

The images must then be individually hand-labelled by 

an analyst before a neural network can be trained in order 

to start to make predictions with a useful degree of 

accuracy. However, if ground truth data in the form of 

either accompanying optical imagery or AIS data is not 

available, this process can be challenging since many 

objects that backscatter brightly can appear similar to 

ships. 

The training process itself is also time-consuming, with 

models taking days or even weeks to be fully trained 

dependent on hardware, size of the training dataset and 

number of epochs (number of times the network sees the 

entire training dataset). Any changes in configuration of 

the network require retraining in full before they can be 

tested, which drastically lengthens the timescale 

necessary to find the optimal configuration. 

LITERATURE REVIEW 

Land Masking 

It can be difficult to find ships in littoral regions of an 

image due to the highly reflective coastal and land 

regions that can make the surrounding areas quite noisy 

and sometimes obscure maritime regions due to specular 

reflections. It is therefore critical to mask these regions 

in order to detect vessels or offshore objects accurately 

using a fixed threshold CFAR based method. Ensuring 

all the land is correctly masked also ensures that there are 

no false alarms generated from reflective surfaces on 

land. 

Several methods have been used to land mask SAR 

images, the simplest of which is to simply overlay a 

shoreline shape file or DEM model over the GeoTIFF 

image. This requires the geolocation accuracy of the 

sensor to be relatively accurate and therefore does not 

work for TIFF SAR images that have not been accurately 

georeferenced. Another quick method proposed by 

Kefeng5 is to down sample the image until the largest 

vessels occupy a single pixel. Then apply a median filter 

to eliminate ships from the low-resolution image. Then a 

2-threshold histogram-based segmentation method is 

used to remove bright regions. This method only works 

well for images with relatively calm sea state as it works 

on the assumption that the land regions are always 

brighter.  

Martin-de-Nicolas6 provides a comparison of several 

segmentation based techniques for land masking 

including Canny edge detection, wavelet-transform 

based edge detection, mean shift algorithm and 

clustering based segmentation techniques. Edge 

detection methods measure the intensity gradient across 

pixels to identify land sea boundaries and edge 

orientation. The Canny edge detection method7 

developed by John Canny convolves the image pixel 

gradient with a two dimensional Gaussian first derivative 

(𝐺𝑛) distribution model to identify the peak intensity and 

peak gradient as a smoothed step would demonstrate a 

low edge strength in-line with the edge and a strong 

gradient normal to the edge. The directional magnitude 

can be described by: 

|𝐺𝑛 ∗ 𝐼| =  |∇(𝐺 ∗ 𝐼)|                 (6) 

where 𝐼 is the image intensity. When selecting the edges 

that correctly define the boundary between land and sea, 

it is critical to apply the appropriate threshold values. A 

double threshold is required for this method as a single 

threshold does not reflect the variation of coastline 

contours, which will have areas of softer edges that 

would subsequently cause several break points in the 

detection. A range of acceptable thresholds enables the 

boundary to be defined as a solid line but also risks 

marking noise edges if the range is too large.  

Clutter Modelling 

The next critical step in determining the presence of 

vessels in the maritime environment is to model the sea 

state accurately. This is an incredibly complex problem 

and does not have a single solution. The sea clutter can 

be modelled by analysing the histogram of the land 

masked image. Rough sea states tend to produce ‘spikey’ 

tail features in the histogram that can be difficult to 

model. Several papers use a number of distributions to 

attempt to model sea states. Sea clutter tends to display 

an underlying mean intensity with a modulating speckle 
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component8. The K distribution is the most widely 

accepted model for SAR imagery9. The K distribution 

probability density function (PDF) is very similar in 

shape to the Weibull distribution. It is the compound 

formulation of the K distribution which is important8. 

Jian Sun10 uses a Gamma, Weibull, Nakagami, Log-

Normal, Rayleigh and K distribution across a number of 

wavelengths and found that a K distribution provided the 

best parameters to fit the test data. Sebastien 

Angelliaume  used K + noise (KN), Pareto + noise (PN), 

K + Rayleigh (KR) and trimodal discrete (3MD) 

distributions11. His results showed that the KR and 3MD 

model provided the better ‘goodness of fit’ metric to the 

S band NetRAD dataset. 3MD had the best performance 

at the cost of a greater number of parameters.  

The probability density function (PDF) for the lognormal 

distribution is defined as: 

𝑃𝐷𝐹𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑥; 𝜎) =
1

𝑥𝜎√2𝜋
exp (−

(𝑙𝑛𝑥−𝜇)2

2𝜎2 )           (7) 

Where 𝜎 is the scale parameter and 𝜇 is the shape 

parameter. The K distribution better captures the long 

spikey tail of the image distribution. It usually includes a 

gamma functions Γ and fast fluctuating component that 

uses a modified Bessel function of the second kind 𝐾𝑎. 

The three parameter PDF is given by: 

𝑃𝐷𝐹𝑘(𝑥; 𝜇, 𝑣, 𝐿) =
2𝜉(𝛽+1)/2𝑥(𝛽−1)/2

Γ(v)Γ(L)
∗ 𝐾𝑎(2 ∗ √𝜉𝑥)    (8) 

Where 𝜇 is the calculated mean of the image data, 𝐿 is 

the number of looks and 𝑣 is the shape parameter12. The 

gamma distribution is given by: 

𝑃𝐷𝐹𝑔𝑎𝑚𝑚𝑎(𝑥; ℎ𝑣) =  
ℎ𝑣

Γ(𝑣)
𝑥𝑣−1exp (−ℎ𝑥)                (9) 

Where ℎ is the scale parameter and 𝑣 is the shape 

parameter. Measuring the ‘goodness of fit’ can be 

accomplished in a number of ways, two of which are by 

using the Maximum likelihood estimation (MLE) or 

threshold error11. The threshold error is usually 

calculated using the cumulative distribution function 

(CDF). In this context it is also referred to as the 

probability of false alarm and acts as a useful metric to 

describe how far over or under estimate a CFAR 

threshold would be set.  

Probability of False Alarm and Probability of Detection 

Clutter can be described in terms of its amplitude 

distribution with the probability of detection 𝑃𝑑 and 

probability of false alarm 𝑃𝑓𝑎 given for a fixed threshold 

that does not vary spatially. To get a more dynamic 

threshold the mean amplitude across over local spatial 

variations can be taken to provide a more accurate 

threshold in regions of the image with higher or lower 

average intensities.13 The 𝑃𝑓𝑎 for an ideal threshold is 

given by: 

𝑃𝑓𝑎 = ∫ 𝑃(𝑥)𝑑𝑥
∞

𝑡
               (10) 

where the threshold varies along the distribution. This 

can be particularly useful for large images with non-

uniform backscatter properties. For a uniform 

backscatter, a single threshold can be calculated by 

setting the false alarm to a value, usually 10-4 to 10-6 11. 

The PDF of the cell-averaged threshold 𝑃(𝑡) is taken as 

the sum of M independent Rayleigh distributed samples. 

𝑃(𝑡) is given by13: 

𝑃(𝑡) = (
𝑀

𝛼
)

𝑀𝑁 𝑡𝑀𝑁−1

Γ(𝑀𝑁)
exp (−

𝑀𝑡

𝛼
)              (11) 

Then the average 𝑃𝑑
̅̅ ̅ is calculated using: 

𝑃𝑑
̅̅ ̅ =  ∫ (∫ 𝑃(𝑥)𝑑𝑥

∞

𝑡
)𝑃(𝑡)𝑑𝑡

∞

0
              (12) 

It is worth noting that the 𝑃𝑓𝑎 being set dynamically 

allows the 𝑃𝑑 to be evaluated in a range of sea states due 

to some SAR images such as strip map mode, covering 

large distances in azimuth. An acceptable false alarm rate 

can be determined based on the situation. A trade off 

must be made between a high false alarm rate with high 

probability of detections and a low false alarm late with 

the risk of missing many detections. A receive operating 

characteristic (ROC) curve is useful for characterising 

the performance of the model using these metrics.  

CNN Ship Detection 

Several CNN-based ship detection and classification 

techniques have been proposed in the last 3-4 years. 

Some14, 15 have used CFAR in conjunction with a CNN 

in order to reduce false-alarm rate compared to a pure 

CFAR solution. Several15-17 have even had success 

classifying different types of ships and other marine 

objects such as wind turbines and oil platforms using 

high resolution TerraSAR-X and Gaofen-3 imagery. 

Pure CNN-based methods applied to both optical and 

SAR imagery have predominantly used either two-stage 

R-CNN derivatives18, 19 (Fast R-CNN20, Faster R-

CNN21) which are dependent on region proposals, or 

one-stage regression-based detectors SSD22-24 (Single 

Shot Detector) or YOLOv225, 26 (You Only Look Once). 

YOLOv2 showed25 improved performance (90.05% 

mAP) when compared to Faster R-CNN with an order of 

magnitude reduction in detection execution time. 

YOLOv327 introduced improvements in bounding box 

and class prediction, as well as feature extraction, which 

increased detection performance for small objects in 
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comparison to YOLOv2 and SSD. The backbone 

network developed for use with YOLOv3 is named 

Darknet53, since it contains 53 convolutional layers. 
There have not yet been any published studies evaluating 

the use of YOLOv3 for ship detection. 

Recently, RetinaNet28 has also been applied23, 29, 30 to 

ship detection in SAR images, demonstrating30 the 

highest precision seen for any CNN with up to 97.56% 

mAP. RetinaNet introduces two key advances in one-

stage object detection: feature pyramid networks (FPN) 

for feature extraction31 and focal loss for dense 

sampling28. 

FPNs31 feed feature maps representing the input image at 

different scales into an object detector, allowing for more 

accurate detections since objects may occupy a range of 

different scales. Crucially, FPNs allow all of these scales 

to be evaluated as part of the neural network’s inherent 

structure with increased resolution but without 

significant impact on processing time. 

Focal loss aims to rectify the class imbalance introduced 

between easy and hard examples during training. In 

object detection, far more negative samples are evaluated 

since the majority of candidate locations are in empty 

background regions, and detectors therefore focus the 

majority of their efforts on learning to classify easy 

background areas rather than the more difficult to detect 

objects of interest. 

Typical cross-entropy (CE) loss measures the 

performance of a binary classification model, penalising 

predictions that are wrong with a high loss value. CE loss 

takes the following form28: 

𝐶𝐸(𝑝𝑡) = − log(𝑝𝑡)                           (13) 

where log here denotes the natural logarithm and 𝑝𝑡  is 

essentially the correctness of the prediction, formally: 

𝑝𝑡 = {
𝑝, 𝑦 = 1

1 − 𝑝, otherwise
                (14) 

where p is the predicted confidence of the class being 

present, and y is the class label, equal to 1 if the class is 

present or -1 if not. 

Therefore if the classifier predicts the probability of the 

class being present is 0.9, and the class is present, 𝑝𝑡 =
0.9 and 𝐶𝐸 = 0.105 (to 3 s.f.). If the class was not in fact 

present, 𝑝𝑡 = 0.1 and 𝐶𝐸 = 2.30 (to 3 s.f.). The further 

the prediction diverges from reality, the higher the loss 

incurred. However even when negative examples are 

correctly classified (i.e. a low probability is predicted), 

the total loss incurred is still significant since there are so 

many of them. Focal loss addresses this problem by 

introducing a focusing parameter 𝛾 ≥ 0, defining focal 

loss (FL) as28: 

𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)              (15) 

If 𝑝𝑡  is near 0, i.e. the example is misclassified, the 

(1 − 𝑝𝑡)𝛾 factor is close to 1 and 𝐹𝐿 ≈ 𝐶𝐸. However as 

𝑝𝑡  tends towards 1, i.e. the example is classified correctly 

with high confidence, this factor tends towards 0. For 

𝛾 = 2 and 𝑝𝑡 = 0.9 as before, 𝐹𝐿 = 0.00105; 100 times 

smaller than the CE loss, whereas for 𝑝𝑡 = 0.1, 𝐹𝐿 =
1.87; only 1.23 times smaller than the CE loss. This has 

the effect of down weighting the loss contribution from 

easily classified examples, leading training to be focused 

towards the more difficult examples in order to reduce 

the overall loss. 

For ship detection in satellite imagery, it is expected that 

focal loss will be highly applicable, since there is a large 

amount of background in comparison to the relatively 

small objects to be detected. Ships in harbours or close 

to other ships may also be more easily distinguished by 

RetinaNet compared to other networks since these harder 

examples will be focused on more during training than 

the easier examples single, bright ships in open water. 

METHODOLOGY 

This section seeks to detail the unforeseen but necessary 

steps involved in ensuring a high detection precision is 

achieved. In order to mask the land regions in the image 

a Canny edge detector was implemented, however its 

performance was poor due to the high number of noisy 

edges detected in the original image. Some pre-

processing algorithms were used to improve the 

performance. A Gaussian filter was used initially, as it 

reduced the speckle noise from the image and by moving 

a kernel over the image one pixel at a time, creating a 

smoothing effect.  

Land Mask 

The image was down-sampled using the average cell 

value within the kernel. In addition to a reduction in false 

edges being detected, this reduced the overall size of the 

image and therefore improved processing speed.  

A Canny edge detector upper and lower threshold were 

set manually to optimise its performance in detecting 

land edges and ignoring softer edges detected in the 

ocean. In order to make sure any breakages in the edge 

detection were properly connected the edges were 

dilated, to close the gaps in the image. The land regions 

that touched the ends of the image also needed to be 

closed off in order to fill the gaps. Once the gaps were 

filled, the land regions in the image were counted; with 

key features such as region centroids and areas extracted. 

In order to make sure any vessels were not mistaken for 
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small land masses, a percentage of the mean area of all 

the land masses was taken. This required a manual 

percentage allocation for each image. 

Finally, the land masked regions were converted to a 

binary array and scaled up to match the original image 

size. This created a small offset as it did not always scale 

to an integer number of pixels. This offset was rectified 

using a dilation function once again. This loss in 

shoreline details was seen as acceptable due to the model 

being aimed at open water vessel detection rather than 

littoral regions. Upon revisit, it was found that the offset 

problem when scaling up the mask was eliminated if the 

image was not down sampled using cell averaging. This 

in turn increased the processing time however proved 

more effective for single acquisitions. 

Distribution Fitting 

The PDF of a lognormal, Gamma and K distributions 

were calculated for the image dataset. Based on these 

distributions the log10CDF was calculated to find the 

distribution that fitted the empirical data the best. The 

false alarm threshold was set to 10-6 initially and the 

increased to measure the effect on detector performance. 

In order to get an accurate distribution for the dataset all 

zero pixel values occurring due to the land mask were 

removed, as this would have heavily skewed the 

distribution.  

In some cases, the SAR image was heavily saturated and 

caused the image to appear bright. In order to reduce the 

effect of this the pixel intensity was capped at a 

maximum value, which allowed the intensity distribution 

to be stretched for better contrast between ship and sea 

surface. The stretched image however was not used for 

the thresholding in order to preserve information about 

the brighter pixels.  

Thresholding 

For the strip map images a single ideal threshold was 

used as this proved to perform well. The ScanSAR 

images would require more adaptive thresholding 

methods using cell averaging as described in the 

previous section. Then the mean power could be 

calculated to find the false alarm threshold across 

averaged cells13. 

Once the false alarm was set, the distribution that had the 

lowest error to image data was used to calculate the ideal 

threshold. The error was measured in dB and converted 

to an 8-bit value for the threshold. The image is then 

converted to binary and regions detected above and 

below the pre-defined size range of vessels to be 

detected, are removed. This limits the minimum 

detectable ship length but also removes any non- vessel 

objects that may be highly reflective on the sea surface.   

Probability of Detection 

For a fixed threshold model, the probability of detection 

can be measured as a function of pixel power in dB. The 

aim of this report is to compare the performance of a 

fixed threshold, CFAR detector against the CNN 

approach, therefore precision and recall were calculated 

by cross-referencing detected regions with the labelled 

NovaSAR images for the acquisition.  

Bounding boxes were drawn around regions that were 

thought to be detections. These were pixel positions 

rather than Cartesian coordinates in order to compare 

with labelled images and calculate the IoU. The 

detections could be converted to georeferenced 

coordinates for comparison with other sensor data e.g. 

AIS, however this test has not been taken further in this 

report.  

Model Sensitivity 

To have a truly robust tool the subtle and not so subtle 

variances in different types of SAR imagery must be 

considered. As mentioned in the land masking section of 

the methodology, high-resolution imagery with a small 

swath will perform differently to lower resolution 

imagery with a wider swath. This is due to a greater range 

of sea states that may be captured in the larger image, 

making a single threshold less effective. Many studies 

have been carried out to show that polarisation and 

incidence angle also have a large impact on reflectivity 

of the ocean surface. 

CNN Configuration 

Two CNN-based object detectors were chosen for initial 

investigation: the AlexeyAB fork32 of YOLOv327 and the 

Fizyr keras-retinanet implementation33 of RetinaNet28. 

YOLOv3 was chosen since YOLOv2 previously 

demonstrated strong performance in ship detection25, and 

YOLOv3 was shown to have further improved 

performance in object detection27. Both were trained on 

the open source SAR Ship Detection Dataset23 (SSDD), 

which consists of 43,819 ship tiles, each of resolution 

256×256 pixels with 50% overlap between them. The 

tiles are cropped from a total of 210 images captured by 

Gaofen-3 and Sentinel-1, both C-band SAR satellites, 

and are provided with the coordinates of bounding boxes 

for the locations of ships in accompanying label files. 

The dataset was split randomly into 70% training, 20% 

validation and 10% test portions for both YOLOv3 and 

RetinaNet. Due to the differing formats and file 

configurations between the two networks, they were 

each trained on a different random split, however the 

results are still expected to be broadly comparable. 
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YOLOv3 was trained using the Darknet53 backbone 

from the darknet53.conv.74 starting weights, with a 

batch size of 64, 32 subdivisions, input image size of 

512×512 and a learning rate of 0.001 for 12,000 batches. 

Batch and subdivision sizes of 1 were used for testing. 

The network was trained once without any image 

augmentation, and once with augmentation on the same 

data split of up to 5 degrees in image rotation and up to 

1.5 in exposure magnitude to investigate the applicability 

of traditional augmentation techniques to SAR imagery. 

Hue and saturation colour augmentations were not 

applied since the images are single channel i.e. greyscale. 

The validation mAP appeared to plateau during training 

after 9000 batches, so training was stopped after 12000 

batches to avoid overfitting. Image augmentation 

appeared only to decrease stability and contribute a 

requirement for longer training times without 

improvement in precision or recall. It was therefore 

concluded that these classical image augmentation 

techniques did not provide benefit to detection 

performance in SAR imagery and so were not applied 

when training RetinaNet. 

RetinaNet was trained on the SSDD using the ResNet-50 

backbone from the resnet50_coco_best_v2.1.0 starting 

weights, with a batch size of 2, a step size of 15337 (no. 

images in training set divided by batch size), an input 

image size of 800×800 and a learning rate of 1 × 10−5 

for 12 epochs. Anchor optimization for RetinaNet34 was 

used to generate optimal anchors. 

The anchor configurations control the sizes and scales of 

candidate bounding boxes, and may result in some 

objects being omitted from training in the event that there 

is no candidate with greater than 0.5 IoU. Due to the 

small sizes of some of the ships, the optimal scales were 

found to be much smaller than the default. 

The anchor configuration for training RetinaNet on the 

SSDD was: 

Sizes: 32, 64, 128, 256, 512 

Strides: 8, 16, 32, 64, 128 

Ratios: 0.440, 1.000, 2.274 

Scales: 0.488, 0.775, 1.221 

NovaSAR Dataset 

The NovaSAR dataset is made up of 35 multilook 

detected ground range acquisitions; 24 in Stripmap mode 

(6m resolution) and 11 in ScanSAR mode (8 at 20m and 

3 at 30m resolution). In total, they contained 616 ships; 

424 in Stripmap and 192 in ScanSAR. Two were 

acquired in VV polarisation, with the rest in HH. A 0.1% 

contrast stretch was applied to all of the images in the 

dataset to improve visibility. 

Each full size acquisition in the NovaSAR dataset was 

first labelled manually using LabelImg35. Coincident 

AIS data was used to verify the labelling was correct in 

two of the acquisitions, however this data was not 

available for the vast majority of the dataset. Whilst 

every effort was made to label all ships present in the 

images and avoid mistakes, there may have been a small 

number of ships that were omitted due to uncertainty or 

objects that closely resembled ships that were mistakenly 

labelled as such. 

Two NovaSAR acquisitions, with ID 6102 (20m 

ScanSAR HH) and 8498 (6m Stripmap HH) were 

selected to form the test set for comparison with CFAR, 

which will be referred to as NovaSAR Test Set B. This 

was because the fixed threshold CFAR technique is 

applied on whole images, and an acquisition-level 

comparison is a better example of an operational use case 

for a ship detection technique. Acquisition 6102 contains 

30 labelled ships, and 8498 contains 52 labelled ships. 

Together they account for 13.3% of the ships in the 

NovaSAR dataset. 

Table 1: NovaSAR Test Set B acquisition properties. 

ID Mode 
GRD 

(m) 

Swath 

(km) 
Pol 

No. of 

looks 

8498 Stripmap 6 20 HH 
1 (range) 

4 (azimuth) 

6102 ScanSAR 20 ~100 HH 
2 (range) 

2 (azimuth) 

The remaining 33 acquisitions, containing 534 ships, 

were divided into tiles, since the resolution of the full-

size images was too high to be used as input to a CNN 

without significant downscaling resulting in information 

loss. 

The tiles were generated using a sliding window 

approach, with 128 pixels of vertical and horizontal 

overlap between tiles in order to ensure that any ships 

that would otherwise have been split between tiles by the 

edge of the window were fully captured in at least one of 

the tiles. This overlap has the effect of artificially 

inflating the number of ships in the dataset through 

duplication, and is similar to the approach taken in 

constructing the SSDD. The final tiles in each row and 

column contained an additional, variable amount of 

overlap with the previous tile to account for the fact that 

the tile sizes were not generally perfect factors of the full 

size image dimensions. 

The tiles were only saved and incorporated into the 

dataset if the label files indicated that they contained 

ships. It was not seen as helpful to include a large number 

of negative examples, i.e. tiles that did not contain ships, 

since these may overwhelm the training dataset and 

drastically increase training times. 
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An example of a labelled NovaSAR image tile is shown 

in Figure 2. 

 

Figure 2: A labelled portion of a 6m resolution 

NovaSAR Stripmap mode Ground Range Detected 

(GRD) HH image. The bounding box coordinates 

reside in a separate annotation file and are displayed 

for demonstration purposes; they are not part of the 

image itself. Image Copyright SSTL. 

This dataset of tiles was further split randomly into 70% 

training, 20% validation and 10% test. This test portion 

will be referred to as NovaSAR Test Set A. 

The resolution of the NovaSAR images was generally 

higher than that of the acquisitions used to generate the 

SSDD, and therefore the apparent sizes of ships would 

have varied from the SSDD if the same 256×256 tile size 

was used, reducing the applicability of the SSDD 

learning to the NovaSAR dataset. RetinaNet was 

therefore tested directly on the NovaSAR dataset, using 

the weights generated by training on the SSDD, to 

determine the ideal tile sizes for both Stripmap and 

ScanSAR images. This step was necessary in order to 

ensure maximum transferability from the SSDD learning 

to a model trained on the NovaSAR dataset. If the 

NovaSAR dataset were sufficiently large, detection 

performance and speed may be improved by using a 

larger tile size. 

The optimal square tile size (by F1-score) for the 

Stripmap images was found to be 480 pixels, as shown 

in Figure 3, while for ScanSAR 448 pixels was found to 

be optimal as shown in Figure 4. The results are 

dimensionless quantities with values between 0 and 1. 

 

Figure 3: Performance metrics for the SSDD model 

for a range of tile sizes when applied to NovaSAR 

Stripmap images after 23 training batches. 

 

Figure 4: Performance metrics for the SSDD model 

for a range of tile sizes when applied to NovaSAR 

ScanSAR images after 23 training batches. 

The NovaSAR dataset of image tiles, which excluded 

acquisitions 6102 and 8498, was therefore generated 

using these tile sizes, and is described in Table 2. The 

total number of ships in these tiles more than doubled in 

comparison to the true number of ships in the full size 

images, since even in the larger Stripmap tiles, the 

majority of each tile is made up of overlapping regions. 



Carman, Kolhatkar 9 34th Annual  

Small Satellite Conference 

Table 2: NovaSAR image tile dataset. 

 No. of tiles No. of ships 

Training 602 846 

Validation 172 248 

Test 87 127 

Transfer Learning Approach 

The model weights which gave the highest performance 

on the SSDD were used a starting point from which to 

train RetinaNet on the NovaSAR dataset. RetinaNet was 

trained until the validation mAP plateaued and the 

weights that gave the highest mAP were used for testing. 

The anchor configuration for training RetinaNet on the 

NovaSAR dataset was: 

Sizes: 32, 64, 128, 256, 512 

Strides: 8, 16, 32, 64, 128 

Ratios: 0.432, 1.00, 2.312 

Scales: 0.400, 0.504, 0.640 

The optimal anchor scales for NovaSAR were found to 

be significantly smaller than the optimal SSDD anchor 

scales, since the ships in the NovaSAR images were 

generally smaller as a proportion of the image than the 

ships in the SSDD. 

Prediction Combination 

In order to achieve a final set of detections for an entire 

acquisition and compare these directly with the CFAR 

based method, the coordinates of the detections in each 

tile of Test Set B had to be translated back into the 

original image space by accounting for the coordinates 

of each tile. Additionally, duplicate ships may have been 

correctly detected in multiple tiles, resulting in several 

overlapping bounding boxes that have detected the same 

ships. This was accounted for by comparing overlap 

regions and discarding all but the highest confidence 

counterparts for those boxes that were predicted in 

multiple tiles, as illustrated by Figure 5. This preserved 

predictions that overlap within the same tile, as in the 

case of ships that are close together, as well as retaining 

predictions made in one tile but not in any others. This 

will have the effect of increasing the probability of both 

true and false positives, which in turn increases recall 

whilst lowering precision. For an operational use case, it 

is expected that recall is likely to be valued over 

precision, since the consequences of missing a detection 

are potentially greater than a false alarm being reported. 

Testing 

 

Figure 5: Bounding box prediction combination 

process, showing two tiles and their overlapping 

regions (dashed lines, not drawn to scale). Top: two 

side-by-side tiles in which different predictions (red 

boxes) have been made in the overlapping region. 

Middle: The predictions from both tiles are overlaid 

in the original coordinate space. Bottom: Duplicate 

predictions are discarded while all unique predictions 

are retained. This process is repeated for all 

overlapping regions. 

The final results given for NovaSAR Test Set B were 

computed using the predictions resulting from this 

process, whereas the results for Test Set A were derived 

directly from the individual tiles. The two sets of results 

are not directly comparable since, for the comparison 

acquisitions in Test Set B, the entire image was divided 

into tiles and input to RetinaNet for prediction, whereas 

only tiles which were known to contain ships were 

included in the shuffled Test Set A. Additionally, some 

ships may have been divided into fragments at tile 

borders, causing the performance of the detector to be 

reduced if it failed to detect the fragments as ships in Test 

Set A. For Test Set B, the performance test would not 

have penalised this behaviour since the ship would have 

been fully present in an adjacent tile, and that prediction 
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would have been carried into the final set of predictions 

used to measure overall detection performance. 

Test Set B gave a comparison with the CFAR method 

and demonstrated the process which would be applied to 

an image for which the presence and locations of ships 

was unknown. Test Set A allowed average performance 

across a range of acquisitions to be determined and 

compared with the detection performance for the C-band 

imagery in the SSDD. 

RESULTS 

SSDD - RetinaNet & YOLOv3 

Both YOLOv3 and RetinaNet were tested on their 

respective 10% test portions of the SAR Ship Detection 

Dataset (SSDD), each using a confidence threshold of 

0.25 to allow for a direct comparison. RetinaNet defaults 

to a 0.1 confidence threshold which does result in a 

higher mean average precision (mAP) of 95.4%, 

however false positives (FP) overwhelm the true 

positives (TP), making the detections considerably less 

useful. The model produced after 23 training batches was 

found to perform the best on the validation dataset, so 

this model was used for testing on the SSDD test set. An 

IoU threshold of 0.5 for a positive detection was required 

throughout testing for all neural networks and models. 

It can be seen from the results in Table 3 that the mean 

average precision (mAP), F1-score and recall of 

RetinaNet are excellent, far exceeding the performance 

of YOLO. RetinaNet predicted a higher number of true 

positives, a lower number of false negatives and only 

marginally more false positives, resulting in increased 

precision in addition. 

Table 3: Results of testing both CNN object 

detectors on the SAR Ship Detection Dataset (SSDD) 

at 0.25 confidence. 

 YOLOv3 RetinaNet 

mAP 0.774 0.928 

F1-score 0.75 0.90 

Precision 0.83 0.85 

Recall 0.69 0.95 

TP 4195 5709 

FP 884 1004 

FN 1870 324 

Based on these results, RetinaNet was selected for testing 

on the NovaSAR dataset due to its high detection 

performance. 

NovaSAR Test Set A - RetinaNet 

Testing the trained SSDD models directly on the 

validation portion of the NovaSAR dataset revealed that 

the model produced after 10 batches performed best, 

likely because models produced beyond this point in 

training were overfitted to the SSDD images. 

Performance on the validation set during NovaSAR 

model training is shown in Figure 6. All metrics 

plateaued completely after ~75 batches, indicating that 

any learning to be gained from the relatively small 

dataset had been exhausted. 

 

Figure 6: NovaSAR model validation performance 

over the course of training on the NovaSAR dataset. 

The test results for confidence thresholds between 0.1 

and 0.9 for the SSDD model and NovaSAR model are 

shown in Figure 7 and Figure 8 respectively. 

 

Figure 7: Performance of the SSDD model at a range 

of confidence thresholds for NovaSAR Test Set A. 
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Figure 8: Performance of the NovaSAR model at a 

range of confidence thresholds for NovaSAR Test Set 

A. 

Lower thresholds provided higher performance for the 

SSDD model since it had not been trained directly on 

NovaSAR data and therefore predictions were generally 

low confidence. The NovaSAR model was able to 

perform well at high thresholds since the predictions 

made were generally high confidence. 

The NovaSAR transfer-learned model outperformed the 

SSDD model across all confidence thresholds, 

demonstrating higher mAP, F1-score and recall. The 

SSDD model appears to outperform the NovaSAR model 

at very high confidence thresholds in terms of precision, 

but this is only due to the extremely low recall at this 

level. 

The results for the highest performing (by F1-score) 

confidence thresholds for each model on NovaSAR Test 

Set A are shown in Table 4. 

Table 4: Performance of RetinaNet SSDD and 

NovaSAR models for NovaSAR Test Set A. The 

SSDD model was evaluated at a 0.2 confidence 

threshold, while the NovaSAR model was evaluated 

at a 0.3 confidence threshold. 

 SSDD model NovaSAR model 

mAP 0.440 0.727 

F1 0.574 0.810 

Precision 0.773 0.895 

Recall 0.457 0.740 

TP 58 94 

FP 17 11 

FN 69 33 

While the NovaSAR model clearly provided the best 

detection performance, the SSDD model was able to 

identify nearly half of the ships in the images with 

relatively few false positives, despite having been trained 

on SAR images of different band and resolution to the 

test set. 

NovaSAR Test Set B - CFAR 

The land masking for acquisition 8498 can be seen 

below. The high land mask performed better as it was 

able to identify ships in the littoral regions as shown in 

Figure 9. 

 

Figure 9: Land mask with cell averaged image (left) 

and with full resolution image (right). Image 

Copyright SSTL. 

Once the land mask was applied, the Gamma, Lognormal 

and K distributions were plotted against pixel intensity 

in dB. This can be seen in Figure 10. 

 

Figure 10: logCFD distributions plotted against 

pixel intensity in y (dB). 

With a range of false alarms from 10-4 to 10-6 the Gamma 

distribution performed the best at a low Pfa but the k-

distribution had the lowest error at a high Pfa, as can be 

seen in Table 5. The table also shows the CDF error 

associated with the Pfa for Both imaging modes. A 

minimum region size of 24 pixels was set in order to 

eliminate small, highly reflective surfaces at the bottom 

left of the image. The results can be seen in Figure 11. 

P
fa

 range 
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Table 5: Sensitivity of false alarm values against 

number of detections in image and CDF error. 

False alarm 
No. of detections CDF error (dB) 

6102 8498 6102 8498 

10-4 10190 70 0.51 1.40 

10-5 9395 76 1.75 1.82 

10-6 8606 65 2.4 1.16 

 

 

Figure 11: Vessels detected in Stripmap image. Image 

Copyright SSTL. 

The bright regions of the detected vessels were in some 

cases captured as independent vessels. These centroids 

were clustered to produce a new location and 

corresponding bounding box for the resulting images. 

The results of this can be seen below in Figure 12. 

 

Figure 12: Bright regions of a ship as separate 

detections (left) and clustering of bounding boxes to 

find more accurate ship area (right). Image 

Copyright SSTL. 

The ScanSAR image 6102 proved much more difficult 

to land mask as the image was originally saturated. The 

image was capped at a max intensity to stretch the 

dynamic range of the image. This improved the contrast 

in the image as can be seen in Figure 13 below. The 

reflectivity can be seen to vary in range, resulting in 

bright sea regions (bottom) and darker regions towards 

the top. The darker regions created softer edge gradients 

resulting in poorer land mask performance. 

 

Figure 13: Visualisation of ScanSAR image before 

(top) and after distribution is stretched. Image 

Copyright SSTL. 

The distributions were fitted to the land masked image as 

shown in Figure 14. The CDF divergence is more 

uniform due to the image being stretched across a smaller 

dynamic range. The K- distribution produced the lowest 

error. 

 

Figure 14: logCDF of distributions in ScanSAR 

image against pixel intensity (dB). 

Due to the varying sea state in range a great deal of 

highly reflective surfaces in the bright regions were 

tagged as vessels, increasing the number of false 

positives dramatically. The detected image can be seen 

in Figure 15.  
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Figure 15: Ship detection performance in ScanSAR 

image. There are a large number of detections in the 

bright region of the image. Image Copyright SSTL. 

NovaSAR Test Set B - RetinaNet 

 

Figure 16: A region of the 8498 acquisition after 

detection by RetinaNet (NovaSAR model), showing 

detections (orange boxes) and labels (blue boxes). 

Detections are accompanied by a class and confidence 

label. Many of the detections are difficult to see due 

to the near-perfect IoU with the labels, however there 

are some false positives on the small strip of land 

which could not be masked out due to the NovaSAR 

image geolocation error. Image Copyright SSTL. 

Figure 16 shows a portion of Stripmap image 8498, 

demonstrating good detection performance; IoU for the 

correctly detected ships is nearly 1.0, and all 9 ships 

which are clearly visible are correctly detected. There 

are, however, 8 false positives shown in the area of land 

that have high prediction confidence. 

The majority of the false positives occurred over regions 

of land, as can be seen in Figure 17. Land masking using 

a shape file was applied to the detections, however due 

to the geolocation error in the NovaSAR images, this was 

offset and therefore unable to fully mask out the false 

positives in land regions. The time taken to perform 

detections could have been drastically reduced if the land 

mask had been applied prior to detection, however this 

method allowed for comparison and evaluation of the 

need for application of a land mask using a CNN-based 

object detector. 

  

Figure 17: A region of the 6102 acquisition after 

detection by RetinaNet (SSDD model), showing 

detections (orange boxes) and labels (blue boxes). 

Some correct detections with high IoU can be seen in 

the top-left and top-right of the image, however it is 

obvious that an overwhelming number of false 

positives were produced over land in regions of bright 

backscatter. Image Copyright SSTL. 

RetinaNet was also able to identify some ships by their 

wakes, which are clearly visible in Figure 18 even 

though the ships themselves are difficult to see. The 

bounding boxes for these ships, however, were 

erroneously predicted as being much too large, leading 

to these detections being counted as false positives since 

their intersection over union with the labels was lower 

than the required value of 0.5. 
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Figure 19: Ship detection performance by RetinaNet for NovaSAR Test Set B at a range of prediction 

confidence thresholds. Cross markers denote the results before land masking, while circular markers denote 

the results after land masking. 

 

Figure 18: RetinaNet (NovaSAR model) detected 

(orange boxes) two ships by their wake in the 6102 

ScanSAR image, though it predicted bounding boxes 

that were too large. A third, smaller ship (blue box, 

middle-right) was not detected. Image Copyright 

SSTL.  

The performance of RetinaNet using both SSDD and 

NovaSAR trained models on NovaSAR Test Set B is 

shown in Figure 19. For both models, it can be seen that 

the best results were obtained with higher confidence 

thresholds than for Test Set A before a land mask was 

applied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower thresholds resulted in an overwhelming number 

of false positives, leading to extremely low levels of 

precision. 

The highest F1-scores for the SSDD model were at 0.4 

confidence before land masking, and 0.2 confidence after 

land masking in the 6102 acquisition. The highest F1-

scores in the 8498 acquisition were at 0.5 confidence 

before land masking and 0.3 confidence after land 

masking. For the NovaSAR model F1-scores were 

highest in both images, before and after land masking, at 

0.9 confidence. Each of these thresholds was therefore 

applied to yield the results in the performance 

comparison with CFAR, in order to give a best-case 

scenario for each method. 

CNN & CFAR Comparison 

The performance comparison for all methods is shown in 

Figure 20 for acquisition 8498 and in Figure 21 for 

acquisition 6102. The bounding boxes produced by the 

CFAR method were compared to the labels at an IoU 

threshold of 0.5, allowing mean average precision, F1-

score, precision and recall to be calculated as with the 

CNN-based method. Any duplicate boxes were counted 

as false positives as with the RetinaNet results. Metrics 

were not calculated for the CFAR results for the 6102 

image due to the large number of false alarms produced; 

precision was effectively zero. 
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Figure 20: NovaSAR acquisition 8498 performance comparison between RetinaNet and CFAR based methods.  

Figure 21: NovaSAR acquisition 6102 performance comparison between RetinaNet methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Both methods were able to identify ships in the 8498 

image, with all RetinaNet models outperforming the 

CFAR method on nearly all metrics both with and 

without land masking. The NovaSAR RetinaNet model 

outperformed the SSDD model after land masking, 

however prior to land masking the NovaSAR model 

produced more false alarms resulting in reduced 

precision. Land masking was necessary for each of the 

RetinaNet models to increase precision in the 6102 

image, where the NovaSAR model again outperformed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the SSDD model as expected, except in terms of 

precision. The NovaSAR model was capable of detecting 

more than 66% of the ships, while the SSDD model was 

able to detect 40% of the ships present with slightly 

fewer false positives. The CFAR detector produced more 

than 8000 false positives after applying a land mask. 

Before land masking, the NovaSAR model (at 0.9 

confidence) produced 292 false positives, and the SSDD 

model (at 0.4 confidence) produced 69. 
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ANALYSIS 

CFAR Results 

The Stripmap image provided good results in the 

detection of vessels. The original image had many land 

features such as harbours and bridges connecting islands 

that were not masked at all with a land boundary shape 

file. The ScanSAR land mask was less accurate than the 

higher resolution Stripmap image due to the low 

intensity gradient between sea and land. However, it 

proved to be effective in masking out smaller land 

masses, such as islands. Setting a suitable region size 

above which any detected objects are considered land is 

a difficult and this can cause false alarms in regions with 

islands that may have a similar size and similar 

reflectivity to a large vessel. Awareness of the size of a 

vessel that the user may be interested in could greatly 

improve the distinction. The ScanSAR image also shows 

a multitude of false detections that encroach on land 

regions due to the edge boundary not being enclosed. 

With most existing systems a simple DEM or shape file 

could be applied, as the geolocation accuracy is good 

enough to mask land accurately. In the event of a GPS 

malfunction an effective land masking solution is critical 

to effective detection of offshore objects.  

Each image showed a different outcome with an increase 

in Pfa. The Stripmap image demonstrated better 

performance with a Gamma distribution at a highest false 

alarm. At the lowest false alarm rate, the K distribution 

had a lower error, as the other two distributions started 

to diverge from the original. The ideal threshold that was 

derived from this error worked very well for the 

Stripmap image as the sea state variation was much less 

than that of the ScanSAR image; this is partly due to the 

larger area covered by ScanSAR exposing it to more 

range in sea surface roughness and reflectivity. To 

properly threshold the ScanSAR image, an adaptive 

threshold would need to be used. This could be achieve 

by taking the cell averaged mean scatter of the land 

masked image.  

The overlap in bounding boxes shows a clear 

requirement for the tool to cluster the centroids of 

detected regions to eliminate duplications and to ensure 

a more accurate representation of vessel size. The 

duplication resulted in a perceived loss of performance 

of the detector as they were counted as false negatives 

although this is not reflective of its true performance.  

Image Labelling 

The labelling process imposes an artificial limit on the 

performance of the CNN-based object detectors since 

they will not have been trained to detect objects that a 

human cannot recognise. They may have otherwise been 

capable of exceeding human detection performance if it 

were possible to label the dataset with perfect accuracy. 

They may also be more prone to making mistakes since 

they may have been erroneously trained to recognise 

objects that are not ships. 

Labelling is improved with user domain experience and 

access to ground truth. It will therefore introduce bias 

into the system - smaller ships, those that are located near 

the coastline, those that may be miscategorised by a 

novice operator and those that appear in geographical 

areas where access to ground truth is limited are more 

likely to be mislabelled. It is possible that some of the 

detections that have been interpreted as false positives 

were in fact ships that were not labelled. 

CNN Results 

The majority of literature focuses solely on the mean 

average precision (mAP), which as shown in the results 

of this study does not fully describe the performance of 

a ship detection system. F1-score provides a more useful 

measurement of the utility of each ship detection 

technique, since both high recall and high precision are 

important in this domain. 

RetinaNet was found to outperform YOLOv3 for ship 

detection, likely due to the inclusion of the 

aforementioned feature pyramid networks and focal loss. 

This was consistent with findings in literature17, 30 which 

demonstrated the highest levels of performance with 

RetinaNet in comparison to a variety of other networks. 

The SSDD results were similar to those found in 

previous studies, with mAP of 95.4% at 0.1 confidence. 

This was higher than the 91.4%23 achieved by the SSDD 

authors, but slightly lower mAP compared to the 96.6%30 

using a dataset solely made up of Gaofen-3 images. 

The 6102 image was more difficult for a number of 

reasons - the resolution was lower at 20m compared to 

6m for the Stripmap image and there was a much greater 

region of land contributing to false alarms. Additionally, 

the majority of the NovaSAR training dataset was made 

up of 6m Stripmap images, which meant that the 

NovaSAR model had only received limited training for 

this type of image. 

Applying a land mask to the RetinaNet detections had 

very little impact on recall, which should be expected 

since true positives ought to lie in the sea. However a 

small number of correct detections were masked out, 

either due to the image geolocation error or the extent of 

the land mask itself. Precision, on the other hand, was 

greatly improved by applying a land mask due to the 

reduction in false positives over land, despite the fact that 
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land masking is not typically utilised for CNN-based 

ship detection. 

The reason for the slightly lower precision and combined 

need for higher confidence thresholds with the NovaSAR 

model is unknown. It may have been due to overtraining, 

or simply a limitation of the small dataset. 

As the resolution of the NovaSAR images was generally 

comparable to the Gaofen-3 and Sentinel-1 images in the 

SSDD, with a large enough training dataset it would be 

expected that similar mAP could be reached. However, 

as shown in Table 3, the mAP plateaued more than 20% 

below the peak for the SSDD. This supports the 

hypothesis that the small number of images available in 

the NovaSAR training dataset was a limiting factor in its 

performance. 

CONCLUSIONS 

The results in this study should be treated with caution - 

it cannot be conclusively determined from a dataset of 

this size that any one method has better performance in 

all circumstances.  

It is likely that, particularly with such a small dataset, 

certain acquisitions will perform better than others. For 

example, the training set may be predominantly made up 

of calm water conditions, or water of a certain depth, and 

the two acquisitions chosen in NovaSAR Test Set B may 

not reflect this. Therefore the performance results shown 

are only indicative and may have been improved with 

additional testing. 

Conversely, the NovaSAR dataset contains only a small 

number of unique locations, some of which are featured 

in multiple acquisitions. It may therefore also be possible 

that the CNN results for both NovaSAR Test Sets would 

not have been as favourable if the locations featured had 

not previously been imaged and included in the training 

dataset. 

However, the results do indicate that a CNN object 

detector can outperform a CFAR methodology for ship 

detection in S-band SAR imagery, even in the absence of 

native training data. This is an important finding as it 

could potentially allow a new satellite such as NovaSAR 

to incorporate a ship detection capability either on the 

ground or on-board, which would provide utility from 

the start of operations. This would avoid the need to 

amass an extensive training dataset - wasting a 

significant portion of the satellite’s operational lifetime - 

before automated image exploitation could become fully 

operational. 

Additionally, performance was found to improve with 

the application of transfer learning to a small native 

dataset. Though performance would almost certainly 

have been further improved with a larger dataset, these 

two findings combined indicate that a satellite mission 

like NovaSAR could initially use an open-source training 

dataset, and gradually train on a native dataset as images 

are captured, improving detection performance 

throughout its operational lifetime. 

Whilst the CNN and CFAR methods both demonstrated 

utility to an image analyst, neither proved that detection 

performance could match or exceed human levels, and 

therefore would not yet be suitable as a complete 

replacement for defence and security purposes where 

high levels of accuracy are required. 

However, with enough tolerance for false alarms and 

missed detections, it is completely possible to automate 

the process of detecting ships in SAR images. The 

RetinaNet methodology is fully automated and produces 

detections in approximately 3 minutes for a standard 

Stripmap image and approximately 10 minutes for a 

standard ScanSAR image on an Nvidia Quadro P3200 

using the tile sizes specified. This time could be reduced 

significantly by dividing the images into larger tiles and 

could theoretically be incorporated onto a satellite 

system for tipping and cueing of an accompanying 

optical Earth Observation satellite. 

FUTURE WORK 

CFAR Ship Detection 

Through the development of the CFAR ship detector, 

there were several parameters that required adjustment to 

optimise the performance on individual images. A 

sensitivity analysis could be run as an independent study 

to measure the effects and adaptively set the following 

parameters:  

- Upper and lower hysteresis threshold for Canny 

edge detection 

-  Standard deviation on Gaussian filter  

- Cell averaging scale factor. This is dependent on the 

speed requirements and processing capability of the 

system. It also creates an offset in the land mask 

when scaling up to original size.  

- Minimum and maximum region detection size to 

remove smaller land masses and sea surface 

specular reflections.  

- Sample size for distribution fitting. 

- False alarm value. 

Setting of the above parameters can be made easier with 

a toggle interface. Since CFAR in its nature is an 

optimisation, it is difficult to for the process to be truly 

automated. These parameters could be adaptively set by 

measuring parameters such as edge gradient for the 
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hysteresis threshold and mean scatter for the localised 

adaptive threshold, however this would incur a heavy 

penalty on processing speed. 

CNN Ship Detection 

YOLOv436 was released after testing with YOLOv3 was 

conducted on the SSDD. YOLOv4 promises improved 

performance over YOLOv3 and may rival RetinaNet, 

however it is unknown how applicable these 

improvements are likely to be to SAR ship detection. 

Application of traditional image augmentation 

techniques including angle and exposure were 

investigated and found not to be applicable to SAR 

images. Future investigation could involve SAR-specific 

image augmentation techniques e.g. speckle filtering, 

multilooking and variation in ground range projection. 

Intensity plots and varying contrast thresholds may be 

found to improve detection performance. Simulated data 

could also be produced to determine whether its 

inclusion in the dataset improves model performance or 

generalisability. 

In this paper, transfer learning was used to apply the 

learning from the large SSDD to the small NovaSAR 

dataset. Future work could investigate the benefit of 

training on a large, NovaSAR-exclusive dataset once 

enough maritime acquisitions from the satellite have 

been collected. 

Negative examples, i.e. image tiles that did not contain 

ships, were not included in the NovaSAR dataset for 

training. Including these in future may reduce the 

number of false positives, especially in images 

containing large regions of land. If this were successful, 

masking out areas of land in the images may not be 

necessary to derive useful detections. 

One tri-polar image containing ships was available for 

the NovaSAR dataset, though only the HH polarisation 

was used. Preliminary results based on this image 

indicate that ships appeared more clearly in HV 

polarisation than in HH or VV. It would be useful to 

acquire further HV polarisation images to investigate in 

more detail which one yields the best results. 

Additionally, while all of the work in this study was 

carried out on single channel images, tri-polar images 

could be combined into three channels for training and 

detection like standard RGB images, and the different 

modes of backscatter in each polarisation channel may 

improve detection performance. 

Assisted labelling is suggested as a method of making 

the labelling process faster and more efficient. The AIS 

sensor on-board NovaSAR could be used to aid with this, 

by confirming detections made by a neural network, and 

saving them as labels, if there is a nearby AIS signal that 

was transmitted close to the time of imaging. 

Additionally, AIS messages contain detailed information 

about the ships that they were transmitted by. While AIS 

is not completely reliable, classification into different 

types of vessels could be achieved even if the difference 

between e.g. a cargo ship and a tanker is not visible to 

the human eye. 

SAR images are susceptible to interference by active 

deception jamming techniques37. Additionally, neural 

networks have been shown38 to be deceived by 

adversarial attacks with a change of a single pixel alone. 

Therefore, if a CNN ship detector were to be used for 

defence and security purposes, it would need to be robust 

against both of these types of potential attacks. 
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