2,500 research outputs found

    Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding

    Full text link
    Automatic parsing of human anatomies at instance-level from 3D computed tomography (CT) scans is a prerequisite step for many clinical applications. The presence of pathologies, broken structures or limited field-of-view (FOV) all can make anatomy parsing algorithms vulnerable. In this work, we explore how to exploit and conduct the prosperous detection-then-segmentation paradigm in 3D medical data, and propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in CT scans. Considering complicated shapes, sizes and orientations of anatomies, without lose of generality, we present the nine degrees-of-freedom (9-DoF) pose estimation solution in full 3D space using a novel single-stage, non-hierarchical forward representation. Our whole framework is executed in a steerable manner where any anatomy of interest can be directly retrieved to further boost the inference efficiency. We have validated the proposed method on three medical imaging parsing tasks of ribs, spine, and abdominal organs. For rib parsing, CT scans have been annotated at the rib instance-level for quantitative evaluation, similarly for spine vertebrae and abdominal organs. Extensive experiments on 9-DoF box detection and rib instance segmentation demonstrate the effectiveness of our framework (with the identification rate of 97.0% and the segmentation Dice score of 90.9%) in high efficiency, compared favorably against several strong baselines (e.g., CenterNet, FCOS, and nnU-Net). For spine identification and segmentation, our method achieves a new state-of-the-art result on the public CTSpine1K dataset. Last, we report highly competitive results in multi-organ segmentation at FLARE22 competition. Our annotations, code and models will be made publicly available at: https://github.com/alibaba-damo-academy/Med_Query.Comment: updated versio

    Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood

    Get PDF
    Better understanding of the effects of growth on children’s bones and cartilage is necessary for clinical and biomechanical purposes. The aim of this study is to define the 3D geometry of children’s rib cages: including sternum, ribs and costal cartilage. Three-dimensional reconstructions of 960 ribs, 518 costal cartilages and 113 sternebrae were performed on thoracic CT-scans of 48 children, aged four months to 15 years. The geometry of the sternum was detailed and nine parameters were used to describe the ribs and rib cages. A "costal index" was defined as the ratio between cartilage length and whole rib length to evaluate the cartilage ratio for each rib level. For all children, the costal index decreased from rib level one to three and increased from level three to seven. For all levels, the cartilage accounted for 45 to 60% of the rib length, and was longer for the first years of life. The mean costal index decreased by 21% for subjects over three years old compared to those under three (p<10-4). The volume of the sternebrae was found to be highly age dependent. Such data could be useful to define the standard geometry of the paediatric thorax and help to detect clinical abnormalities.Grant from the ANR (SECUR_ENFANT 06_0385) and supported by the GDR 2610 “BiomĂ©canique des chocs” (CNRS/INRETS/GIE PSA Renault

    CIDI-Lung-Seg: A Single-Click Annotation Tool for Automatic Delineation of Lungs from CT Scans

    Full text link
    Accurate and fast extraction of lung volumes from computed tomography (CT) scans remains in a great demand in the clinical environment because the available methods fail to provide a generic solution due to wide anatomical variations of lungs and existence of pathologies. Manual annotation, current gold standard, is time consuming and often subject to human bias. On the other hand, current state-of-the-art fully automated lung segmentation methods fail to make their way into the clinical practice due to their inability to efficiently incorporate human input for handling misclassifications and praxis. This paper presents a lung annotation tool for CT images that is interactive, efficient, and robust. The proposed annotation tool produces an "as accurate as possible" initial annotation based on the fuzzy-connectedness image segmentation, followed by efficient manual fixation of the initial extraction if deemed necessary by the practitioner. To provide maximum flexibility to the users, our annotation tool is supported in three major operating systems (Windows, Linux, and the Mac OS X). The quantitative results comparing our free software with commercially available lung segmentation tools show higher degree of consistency and precision of our software with a considerable potential to enhance the performance of routine clinical tasks.Comment: 4 pages, 6 figures; to appear in the proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2014
    • 

    corecore